928 resultados para chloroplast DNA sequence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The wild common bean (Phaseolus vulgaris) is widely but discontinuously distributed from northern Mexico to northern Argentina on both sides of the Isthmus of Panama. Little is known on how the species has reached its current disjunct distribution. In this research, chloroplast DNA polymorphisms in seven non-coding regions were used to study the history of migration of wild P. vulgaris between Mesoamerica and South America. A penalized likelihood analysis was applied to previously published Leguminosae ITS data to estimate divergence times between P. vulgaris and its sister taxa from Mesoamerica, and divergence times of populations within P. vulgaris. Fourteen chloroplast haplotypes were identified by PCR-RFLP and their geographical associations were studied by means of a Nested Clade Analysis and Mantel Tests. The results suggest that the haplotypes are not randomly distributed but occupy discrete parts of the geographic range of the species. The current distribution of haplotypes may be explained by isolation by distance and by at least two migration events between Mesoamerica and South America: one from Mesoamerica to South America and another one from northern South America to Mesoamerica. Age estimates place the divergence of P. vulgaris from its sister taxa from Mesoamerica at or before 1.3 Ma, and divergence of populations from Ecuador-northern Peru at or before 0.6 Ma. As these ages are taken as minimum divergence times, the influence of past events, such as the closure of the Isthmus of Panama and the final uplift of the Andes, on the migration history and population structure of this species cannot be disregarded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bryaceae are a large cosmopolitan family of mosses containing genera of considerable taxonomic difficulty. Phylogenetic relationships within the family were inferred using data from chloroplast DNA sequences (rps4 and trnL-trnF region). Parsimony and maximum likelihood optimality criteria, and Bayesian phylogenetic inference procedures were employed to reconstruct relationships. The genera Bryum and Brachymenium are not monophyletic groups. A clade comprising Plagiobryum, Acidodontium, Mielichhoferia macrocarpa, Bryum sects. Bryum, Apalodictyon, Limbata, Leucodontium, Caespiticia, Capillaria (in part: sect. Capillaria), and Brachymenium sect. Dicranobryum, is well supported in all analyses and represents a major lineage within the family. Section Dicranobryum of Brachymenium is more closely related to section Bryum than to the other sections of Brachymenium, as are Mielichhoferia macrocarpa and M. himalayana. Species of Acidodontium form a clade with Anomobryum julaceum. The grouping of species with a rosulate gametophytic growth form suggests the presence of a 'rosulate' clade similar in circumscription to the genus Rosulabryum. Mielichhoferia macrocarpa and M. himalayana are transferred to Bryum as B. porsildii and B. caucasicum, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a statistical method for detecting recombination in DNA sequence alignments, which is based on combining two probabilistic graphical models: (1) a taxon graph (phylogenetic tree) representing the relationship between the taxa, and (2) a site graph (hidden Markov model) representing interactions between different sites in the DNA sequence alignments. We adopt a Bayesian approach and sample the parameters of the model from the posterior distribution with Markov chain Monte Carlo, using a Metropolis-Hastings and Gibbs-within-Gibbs scheme. The proposed method is tested on various synthetic and real-world DNA sequence alignments, and we compare its performance with the established detection methods RECPARS, PLATO, and TOPAL, as well as with two alternative parameter estimation schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overall phylogenetic relationships within the genus Pelargonium (Geraniaceae) were inferred based on DNA sequences from mitochondrial(mt)-encoded nad1 b/c exons and from chloroplast(cp)-encoded trnL (UAA) 5' exon-trnF (GAA) exon regions using two species of Geranium and Sarcocaulon vanderetiae as outgroups. The group II intron between nad1 exons b and c was found to be absent from the Pelargonium, Geranium, and Sarcocaulon sequences presented here as well as from Erodium, which is the first recorded loss of this intron in angiosperms. Separate phylogenetic analyses of the mtDNA and cpDNA data sets produced largely congruent topologies, indicating linkage between mitochondrial and chloroplast genome inheritance. Simultaneous analysis of the combined data sets yielded a well-resolved topology with high clade support exhibiting a basic split into small and large chromosome species, the first group containing two lineages and the latter three. One large chromosome lineage (x = 11) comprises species from sections Myrrhidium and Chorisma and is sister to a lineage comprising P. mutans (x = 11) and species from section Jenkinsonia (x = 9). Sister to these two lineages is a lineage comprising species from sections Ciconium (x = 9) and Subsucculentia (x = 10). Cladistic evaluation of this pattern suggests that x = 11 is the ancestral basic chromosome number for the genus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA-strand exchange is a vital step in the recombination process, of which a key intermediate is the four-way DNA Holliday junction formed transiently in most living organisms. Here, the single-crystal structure at a resolution of 2.35 Å of such a DNA junction formed by d(CCGGTACCGG)2, which has crystallized in a more highly symmetrical packing mode to that previously observed for the same sequence, is presented. In this case, the structure is isomorphous to the mismatch sequence d(CCGGGACCGG)2, which reveals the roles of both lattice and DNA sequence in determining the junction geometry. The helices cross at the larger angle of 43.0° (the previously observed angle for this sequence was 41.4°) as a right-handed X. No metal cations were observed; the crystals were grown in the presence of only group I counter-cations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclamen colchicum has a mixed history in the hands of botanists. This paper examines the genetic identity of a group of wild Cyclamen populations from the Caucasus to discover whther they are Cyclamen colchicum, C. purpurascens or a mixture of the two. The collections supplemented by material collected at the type locality for C. colchicum, proved to be a single but variable genetic group of C. colchicum that was distinct from C. purpurascens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A substantial fraction of the eukaryotic genome consists of repetitive DNA sequences that include satellites, minisatellites, microsatellites, and transposable elements. Although extensively studied for the past three decades, the molecular forces that generate, propagate and maintain repetitive DNAs in the genomes are still discussed. To further understand the dynamics and the mechanisms of evolution of repetitive DNAs in vertebrate genome, we searched for repetitive sequences in the genome of the fish species Hoplias malabaricus. A satellite sequence, named 5SHindIII-DNA, which has a conspicuous similarity with 5S rRNA genes and spacers was identified. FISH experiments showed that the 5S rRNA bona fide gene repeats were clustered in the interstitial position of two chromosome pairs of H. malabaricus, while the satellite 5SHindIII-DNA sequences were clustered in the centromeric position in nine chromosome pairs of the species. The presence of the 5SHindIII-DNA sequences in the centromeres of several chromosomes indicates that this satellite family probably escaped from the selective pressure that maintains the structure and organization of the 5S rDNA repeats and become disperse into the genome. Although it is not feasible to explain how this sequence has been maintained in the centromeric regions, it is possible to hypothesize that it may be involved in some structural or functional role of the centromere organization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the cloning and characterization of a long interspersed nucleotide element (LINE) fi-om a cichlid fish, Oreochromis niloticus, and show the distribution of this element, called CiLINE2 for cichlid LINE2, in the chromosomes of this species. The identification of an open reading frame in CiLINE2 with amino acid sequence similarity to reverse transcriptases encoded by LINE-like elements in Caenorhabditis elegans, Platemys spixii, Schistosoma mansoni, Gallus gallus (CRI), Drosophila melanogaster (I factor), and Homo sapiens (LINE2), as well as the structure of the element, suggest it is a member of this family of non-long terminal repeat-containing retrotransposons. Search of a DNA sequence database identified sequences similar to CiLINE2 in four other fish species (Haplotaxodon microlepis, Oreochromis mossambicus, Pseudotropheus zebra, and Fugu rubripes). Southern blot hybridization experiments revealed the presence of sequences similar to CiLINE2 in all Tilapiini species analyzed from the genera Oreochromis, Tilapia, and Sarotherodon, and gave an estimated copy number of about 5500 for the haploid genome of O. niloticus. Fluorescent in situ hybridization showed that CiLINE2 sequences were organized in small clusters dispersed over all chromosomes of O. niloticus, with a higher concentration near chromosome ends. Furthermore the long arm of chromosome 1 was strikingly enriched with this sequence. The distribution of LINE2-related elements might underlie the difference in chromosome banding patterns observed between cold-blooded vertebrates and mammals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sixty-five accessions of the species-rich freshwater red algal order Batrachospermales were characterized through DNA sequencing of two regions: the mitochondrial cox1 gene (664 bp), which is proposed as the DNA barcode for red algae, and the UPA (universal plastid amplicon) marker (370 bp), which has been recently identified as a universally amplifying region of the plastid genome. upgma phenograms of both markers were consistent in their species-level relationships, although levels of sequence divergence were very different. Intraspecific variation of morphologically identified accessions for the cox1 gene ranged from 0 to 67 bp (divergences were highest for the two taxa with the greatest number of accessions; Batrachospermum helminthosum and Batrachospermum macrosporum); while in contrast, the more conserved universal plastid amplicon exhibited much lower intraspecific variation (generally 0-3 bp). Comparisons to previously published mitochondrial cox2-3 spacer sequences for B. helminthosum indicated that the cox1 gene and cox2-3 spacer were characterized by similar levels of sequence divergence, and phylogeographic patterns based on these two markers were consistent. The two taxa represented by the largest numbers of specimens (B. helminthosum and B. macrosporum) have cox1 intraspecific divergence values that are substantially higher than previously reported, but no morphological differences can be discerned at this time among the intraspecific groups revealed in the analyses. DNA barcode data, which are based on a short fragment of an organellar genome, need to be interpreted in conjunction with other taxonomic characters, and additional batrachospermalean taxa need to be analyzed in detail to be able to draw generalities regarding intraspecific variation in this order. Nevertheless, these analyses reveal a number of batrachospermalean taxa worthy of more detailed DNA barcode study, and it is predicted that such research will have a substantial effect on the taxonomy of species within the Batrachospermales in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. The emergence of multi- and extensively-drug resistant Mycobacterium tuberculosis strains has created an urgent need for new agents to treat tuberculosis (TB). The enzymes of shikimate pathway are attractive targets to the development of antitubercular agents because it is essential for M. tuberculosis and is absent from humans. Chorismate synthase (CS) is the seventh enzyme of this route and catalyzes the NADH- and FMN-dependent synthesis of chorismate, a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Although the M. tuberculosis Rv2540c (aroF) sequence has been annotated to encode a chorismate synthase, there has been no report on its correct assignment and functional characterization of its protein product. Results. In the present work, we describe DNA amplification of aroF-encoded CS from M. tuberculosis (MtCS), molecular cloning, protein expression, and purification to homogeneity. N-terminal amino acid sequencing, mass spectrometry and gel filtration chromatography were employed to determine identity, subunit molecular weight and oligomeric state in solution of homogeneous recombinant MtCS. The bifunctionality of MtCS was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. The flavin reductase activity was characterized, showing the existence of a complex between FMN ox and MtCS. FMNox and NADH equilibrium binding was measured. Primary deuterium, solvent and multiple kinetic isotope effects are described and suggest distinct steps for hydride and proton transfers, with the former being more rate-limiting. Conclusion. This is the first report showing that a bacterial CS is bifunctional. Primary deuterium kinetic isotope effects show that C4-proS hydrogen is being transferred during the reduction of FMNox by NADH and that hydride transfer contributes significantly to the rate-limiting step of FMN reduction reaction. Solvent kinetic isotope effects and proton inventory results indicate that proton transfer from solvent partially limits the rate of FMN reduction and that a single proton transfer gives rise to the observed solvent isotope effect. Multiple isotope effects suggest a stepwise mechanism for the reduction of FMNox. The results on enzyme kinetics described here provide evidence for the mode of action of MtCS and should thus pave the way for the rational design of antitubercular agents. © 2008 Ely et al; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molossidae species, Cynomops abrasus (2n = 34, fundamental number, FN = 64), Eumops auripendulus (2n = 42, FN = 62), Molossus rufus (2n = 48, FN = 64), Molossops temminckii (2n = 48, FN = 64), and Nyctinomops laticaudatus (2n = 48, FN = 64), and Phyllostomidae species, Phyllostomus discolor (2n = 32, FN = 60), have karyotypes with different chromosome and fundamental numbers, different localization of constitutive heterochromatin, and different numbers and location of nucleolar organizer regions (NORs). Fluorescence in situ hybridization with a human probe of the telomeric sequence (TTAGGG)n produced fluorescent signals in telomeric regions of the six bat species' chromosomes; in E. auripendulus, pericentromeric signals were also observed in the acrocentric and subtelocentric chromosomes. A relationship between telomeric sequences and NORs, and between telomeric sequences and constitutive heterochromatin was detected in chromosomes bearing NORs in C. abrasus, M. temminckii, N. laticaudatus, and P. discolor. No interstitial signal was observed in the meta- or submetacentric chromosomes of these species. ©FUNPEC-RP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The detection of pertinent biomarkers has the potential provide an early indication of disease progression before considerable damage has been incurred. A decrease in an individual’s sensitivity to insulin, which may be quantified as the ratio of insulin to glucose in the blood after a glucose pulse, has recently been reported as an early predictor of insulin-dependent diabetes mellitus. Routine measurement of insulin levels is therefore desirable in the care of diabetes-prone individuals. A rapid, simple, and reagentless method for insulin detection would allow for wide-spread screenings that provide earlier signs of diabetes onset. The aim of this thesis is to develop a folding-base electrochemical sensor for the detection of insulin. The sensor described herein consists of a DNA probe immobilized on a gold disc electrode via an alkanethiol linker and embedded in an alkanethiol self-assembled monolayer. The probe is labeled with a redox reporter, which readily transfers electrons to the gold electrode in the absence of insulin. In the presence of insulin, electron transfer is inhibited, presumably due to a binding-induced conformational or dynamic change in the DNA probe that significantly alters the electron-tunneling pathway. A 28-base segment of the insulin-linked polymorphic region that has been reported to bind insulin with high affinity serves as the capture element of the DNA probe. Three probe constructs that vary in their secondary structure and position of the redox label are evaluated for their utility as insulin-sensing elements on the electrochemical platform. The effects of probe modification on secondary structure are also evaluated using circular dichroism spectroscopy.