958 resultados para chiral ligand
Resumo:
A simple enantioselective method for the determination of praziquantel (PZQ) and trans-4-hydroxypraziquantel (4-OHPZQ) in human plasma was developed and validated by high-performance liquid chromatography/mass spectrometry. The plasma samples were prepared by liquid-liquid extraction using a mixture of methyl-tert-butylether/dichloromethane (2:1, v/v) as extraction solvent. The direct resolution of PZQ and 4-OHPZQ enantiomers was performed on a Chiralpak AD column using hexane-isopropanol (75:25, v/v) as the mobile phase. Diazepam was used as internal standard. The method described here is simple and reproducible. The quantitation limit of 1.25 ng/ml for each PZQ enantiomer and of 12.5 ng/ml for each 4-OHPZQ enantiomer permits the use of the method in studies investigating the kinetic disposition of a single dose of 1.5g racemic PZQ. Enantioselectivity in the kinetic disposition of PZQ and 4-OHPZQ was observed in the clinical study. with the demonstration of a higher proportion of the (+)-(S)-PZQ and (-)-(R)-4-OHPZQ enantiomers in plasma. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
(+/-)-Licarin A (1), a neolignan obtained by the oxidative coupling reaction of isoeugenol, had in this study its enantiomers resolved. A novel, quick and efficient enantiomeric resolution of 1 was directly performed by chiral high-performance liquid chromatography (HPLC-PDA) protocol (CHIRALPACK (R) AD column; 9:1 (v/v) n-hexane:2-propanol; 1.0 mL/min). This method provided a chromatogram profile with a well-resolved peak separation. After isolation of each enantiomer with ee >99.9%, they were analysed in a polarimeter. Compound 2, which showed a retention time (t(r)) of 12.13 min, was the (+)-enantiomer and compound 3 (t(r) =18.90 min) was the (-)-enantiomer. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Galectin-1 (Gal-1) regulates leukocyte turnover by inducing the cell surface exposure of phosphatidylserine (PS), a ligand that targets cells for phagocytic removal, in the absence of apoptosis. Gal-1 monomer- dimer equilibrium appears to modulate Gal-1-induced PS exposure, although the mechanism underlying this regulation remains unclear. Here we show that monomer- dimer equilibrium regulates Gal-1 sensitivity to oxidation. A mutant form of Gal-1, containing C2S and V5D mutations (mGal-1), exhibits impaired dimerization and fails to induce cell surface PS exposure while retaining the ability to recognize carbohydrates and signal Ca(2+) flux in leukocytes. mGal-1 also displayed enhanced sensitivity to oxidation, whereas ligand, which partially protected Gal-1 from oxidation, enhanced Gal-1 dimerization. Continual incubation of leukocytes with Gal-1 resulted in gradual oxidative inactivation with concomitant loss of cell surface PS, whereas rapid oxidation prevented mGal-1 from inducing PS exposure. Stabilization of Gal-1 or mGal-1 with iodoacetamide fully protected Gal-1 and mGal-1 from oxidation. Alkylation-induced stabilization allowed Gal-1 to signal sustained PS exposure in leukocytes and mGal-1 to signal both Ca(2+) flux and PS exposure. Taken together, these results demonstrate that monomer-dimer equilibrium regulates Gal-1 sensitivity to oxidative inactivation and provides a mechanism whereby ligand partially protects Gal-1 from oxidation.
Resumo:
An enantioselective high-performance liquid chromatographic method for the analysis of carvedilol in plasma and urine was developed and validated using (-)-menthyl chloroformate (MCF) as a derivatizing reagent. Chloroform was used for extraction, and analysis was performed by HPLC on a C18 column with a fluorescence detector. The quantitation limit was 0.25 ng/ml for S(-)-carvedilol in plasma and 0.5 ng/ml for R(+)-carvedilol in plasma and for both enantiomers in urine. The method was applied to the study of enantioselectivity in the pharmacokinetics of carvedilol administered in a multiple dose regimen (25mg/12h) to a hypertensive elderly female patient. The data obtained demonstrated highest plasma levels for the R(+)-carvedilol(AUCSS 75.64 vs 37.29ng/ml). The enantiomeric ratio R(+)/S(-) was 2.03 for plasma and 1.49 0 - 12 for urine (Aeo-12 17.4 vs 11.7 pg). Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
Seven cysteine-rich repeats form the ligand-binding region of the low-density lipoprotein (LDL) receptor. Each of these repeats is assumed to bind a calcium ion, which is needed for association of the receptor with its ligands, LDL and beta-VLDL. The effects of metal ions on the folding of the reduced N-terminal cysteine-rich repeat have been examined by using reverse-phase high-performance liquid chromatography to follow the formation of fully oxidized isomers with different disulfide connectivities. in the absence of calcium many of the 15 possible isomers formed on oxidation, whereas in its presence the predominant product at equilibrium had the native disulfide bond connectivities. Other metals were far less effective at directing disulfide bond formation: Mn2+ partly mimicked the action of Ca2+, but Ba2+, Sr2+, and Mg2+ had little effect. This metal-ion specificity was also observed in two-dimensional H-1 NMR spectral studies: only Ca2+ induced the native three-dimensional fold. The two paramagnetic ions, Gd3+ and Mn2+, and Cd2+ did not promote adoption of a well-defined structure, and the two paramagnetic ions did not displace calcium ions. The location of calcium ion binding sites in the repeat was also explored by NMR spectroscopy. The absence of chemical shift changes for the side chain proton resonances of Asp26, Asp36, and Glu37 from pH 3.9 to 6.8 in the presence of calcium ions and their proximal location in the NMR structures implicated these side chains as calcium ligands. Deuterium exchange NMR experiments also revealed a network of hydrogen bonds that stabilizes the putative calcium-binding loop.
Resumo:
2-(1-Aminoalkyl)oxazole-4 and 5-carboxylates are available, without detectable racemisation, by a sequence involving N-acylation of isoxazol-5(2H)one carboxylates with phthalimidoamino acids, photolysis of the acylated product, and hydrazinolysis. An application of the procedure to the synthesis of almazole A and B is described (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The ligand-binding domain of the low-density lipoprotein (LDL) receptor is comprised of seven tandemly repeated ligand-binding modules, each being approximately 40 amino acids long and containing six conserved cysteine residues. We have expressed and characterized a concatemer of the first two modules (LB1 and LB2) of the human LDL receptor. Oxidative folding of the recombinant concatemer (rLB(1-2)), in the presence of calcium ions, gave a single dominant isomer with six disulfide bonds. Peptic cleavage of the short Linker region that connects the last cysteine residue of LB1 and the first cysteine residue of LB2 yielded two discrete fragments, thus excluding the presence of intermodule disulfide bonds. The N-terminal module, LB1, reacted with a conformation-specific monoclonal antibody (IgG-C7) made to LB1 in the native LDL receptor. From this, we concluded that the first module was correctly folded, with the same set of disulfide bonds as LB1 of the LDL receptor. The disulfide bond connections of LB2 were identified from mass spectral analysis of fragments formed by digestion of the C-terminal peptic fragment with elastase. These data showed that the disulfide bonds of LB2 connected Cys(I) and Cys(III), Cys(II) and Cys(V), and Cys(IV) and Cys(VI). This pattern is identical to that found for recombinant LB1 and LB2. The concatemer has two high-affinity calcium-binding sites, one per module. An analysis of the secondary chemical shifts of C alpha protons shows that the conformations of LB1 and LB2 in the concatemer are very similar to those of the individual modules, with no evidence for strong interactions between the two modules.
Resumo:
Past studies have shown that apoptosis mediated by TNF-related apoptosis-inducing ligand (TRAIL) is regulated by the expression of two death receptors [TRAIL receptor 1 (TRAIL-RI) and TRAIL-R2] and two decoy receptors (TRAIL-R3 and TRAIL-R4) that inhibit apoptosis, In previous studies, me have shown that TRAIL but not other members of the tumor necrosis factor family induce apoptosis in approximately two-thirds of melanoma cell lines. Here, we examined whether the expression of TRAIL-R at the mRNA and protein level in a panel of 28 melanoma cell lines and melanocytes correlated with their sensitivity to TRAIL-induced apoptosis, We report that at least three factors appear to underlie the variability in TRAIL-induced apoptosis. (a) Pour of nine cell lines that were insensitive to TRAIL-induced apoptosis failed to express death receptors, and in two instances, lines were devoid of all TRAIL-Rs. Southern analysis suggested this was due to loss of the genes for the death receptors, (b) Despite the presence of mRNA for the TRAIL-R, some of the lines failed to express TRAIL-R protein on their surface. This was evident for TRAIL-RI and more so for the TRAIL decoy receptors TRAIL-R3 and -R4, Studies on permeabilized cells revealed that the receptors were located within the cytoplasm and redistribution from the cytoplasm may represent a posttranslational control mechanism. (c) Surface expression of TRAIL-RI and -R2 (but not TRAIL-R3 and -R4) showed an overall correlation with TRAIL-induced apoptosis. However, certain melanoma cell lines and clones were relatively resistant to TRAIL-induced apoptosis despite the absence of decoy receptors and moderate levels of TRAIL-RI and -R2 expression. This may indicate the presence of inhibitors within the cells, but resistance to apoptosis could not be correlated with expression of the caspase inhibitor FLICE-inhibitory protein. mRNA for another TRAIL receptor, osteoprotegerin, was expressed in 22 of the melanoma lines but not on melanocytes. Its role in induction of apoptosis remains to be studied. These results appear to have important implications for future clinical studies on TRAIL.
Resumo:
The new macrocyclic ligand trans-6-(9-anthracenylmethylamino)-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecan-13-amine has been synthesized and characterised as its copper(II) complex and the crystal structure of this complex has been determined. Fluorescence of the anthracenyl group of the macrocycle is quenched in its free base form and when complexed with Cu-II. Fluorescence returns when Lewis acids such as H+ and Zn-II are added to solutions of the ligand, indicating that photoinduced electron transfer from the amine lone pairs is responsible for fluorescence quenching in the free base form. By contrast, fluorescence of the complex is quenched by intramolecular electronic energy transfer.
Resumo:
Four discontinuous extracellular sequence domains have been proposed to form the ligand binding sites of the ligand-gated ion channel receptor superfamily. In this study, we investigated the role of 12 contiguous residues of the inhibitory glycine receptor that define the proposed loop A ligand binding domain; Using the techniques of site-directed mutagenesis and patch-clamp electrophysiology, four of the 12 residues were shown to have impaired ligand binding. Three mutants, I93A, A101H, and N102A, resulted in significant (17-44-fold) increases in the agonist EC50 values as compared with the wild-type glycine receptor, whereas Hill coefficients, I-max values, and antagonist affinity remained largely unaffected. Consideration of receptor efficacy values indicates that these residues are involved in ligand binding rather than channel activation. A fourth mutant, W94A, failed to give rise to any glycine-activated currents, although cell-surface expression was observed, suggesting that this residue may also be involved in agonist binding. These data provide the most extensive characterization of the loop A ligand binding domain available to date and define two new residue locations, Ile(93) and Asn(102), as contributing to the four-loop model of ligand binding.
Resumo:
Induction of apoptosis in cells by TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF family, is believed to be regulated by expression of two death-inducing and two inhibitory (decoy) receptors on the cell surface. In previous studies we found no correlation between expression of decoy receptors and susceptibility of human melanoma cells to TRAIL-induced apoptosis, In view of this, we studied the localization of the receptors in melanoma cells by confocal microscopy to better understand their function. We show that the death receptors TRAIL-R1 and R2 are located in the trans-Golgi network, whereas the inhibitory receptors TRAIL-R3 and -R4 are located in the nucleus. After exposure to TRAIL, TRAIL-R1 and -R2 are internalized into endosomes, whereas TRAIL-R3 and -R4 undergo relocation from the nucleus to the cytoplasm and cell membranes. This movement of decoy receptors was dependent on signals from TRAIL-R1 and -R2, as shown by blocking experiments with Abs to TRAIL-R1 and -R2, The location of TRAIL-R1, -R3, and -R4 in melanoma cells transfected with cDNA for these receptors was similar to that in nontransfected cells, Transfection of TRAIL-R3 and -R4 increased resistance of the melanoma lines to TRAIL-induced apoptosis even in melanoma lines that naturally expressed these receptors. These results indicate that abnormalities in decoy receptor location or function may contribute to sensitivity of melanoma to TRAIL-induced apoptosis and suggest that further studies are needed on the functional significance of their nuclear location and TRAIL-induced movement within cell.
Resumo:
The title pendent-arm macrocyclic hexaamine ligand binds stereospecifically in a hexadentate manner, and we report here its isomorphous Ni-II and Zn-II complexes (both as perchlorate salts), namely (cis-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine-kappa(6)N)nickel(II) diperchlorate, [Ni(C12H30N6)](ClO4)(2), and (cis-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine-kappa(6)N)zinc(II) diperchlorate, [Zn(C-12 H30N6)](ClO4)(2). Distortion of the N-M-N valence angles from their ideal octahedral values becomes more pronounced with increasing metal-ion size and the present results are compared with other structures of this ligand.
Resumo:
In previous studies we have shown that the sensitivity of melanoma cell lines to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)induced apoptosis was determined largely by the level of expression of death receptor TRAIL receptor 2 on the cells. However, approximately one-third of melanoma cell lines were resistant to TRAIL, despite expression of high levels of TRAIL receptor 2. The present studies show that these cell lines had similar levels of TRAIL-induced activated caspase-3 as the TRAIL-sensitive lines, but the activated caspase-3 did not degrade substrates downstream of caspase-3 [inhibitor of caspase-activated DNase and poly(ADP-ribose) polymerase]. This appeared to be due to inhibition of caspase-3 by X-linked inhibitor of apoptosis (XIAP) because XIAP was bound to activated caspase-3, and transfection of XIAP into TRAIL-sensitive cell lines resulted in similar inhibition of TRAIL-induced apoptosis. Conversely, reduction of XIAP levels by overexpression of Smac/ DIABLO in the TRAIL-resistant melanoma cells was associated with the appearance of catalytic activity by caspase-3 and increased TRAIL-induced apoptosis. TRAIL was shown to cause release of Smac/DIABLO from mitochondria, but this release was greater in TRAIL-sensitive cell lines than in TRAIL-resistant cell lines and was associated with downregulation of XIAP levels. Furthermore, inhibition of Smac/DIABLO release by overexpression of Bcl-2 inhibited down-regulation of XIAP levels. These results suggest that Smac/DIABLO release from mitochondria and its binding to XIAP are an alternative pathway by which TRAIL induces apoptosis of melanoma, and this pathway is dependent on the release of activated caspase-3 from inhibition by XIAP and possibly other inhibitor of apoptosis family members.