320 resultados para chemotaxis
Resumo:
There has been recent interest in sensory systems that are able to display a response which is proportional to a fold change in stimulus concentration, a feature referred to as fold-change detection (FCD). Here, we demonstrate FCD in a recent whole-pathway mathematical model of Escherichia coli chemotaxis. FCD is shown to hold for each protein in the signalling cascade and to be robust to kinetic rate and protein concentration variation. Using a sensitivity analysis, we find that only variations in the number of receptors within a signalling team lead to the model not exhibiting FCD. We also discuss the ability of a cell with multiple receptor types to display FCD and explain how a particular receptor configuration may be used to elucidate the two experimentally determined regimes of FCD behaviour. All findings are discussed in respect of the experimental literature.
Resumo:
Objectives: To investigate the role of toll-like receptor 9 on sepsis-induced failure of neutrophil recruitment to the site of infection. Design: Prospective experimental study. Setting: University research laboratory. Interventions: Model of polymicrobial sepsis induced by cecal ligation and puncture in wild-type and toll-like receptor 9-deficient mice. Measurements and Main Results: Toll-like receptor 9-deficient mice with cecal ligation and puncture-induced severe sepsis did not demonstrate failure of neutrophil migration and consequently had a low systemic inflammatory response and a high survival rate. Upon investigating the mechanism by which toll-like receptor 9-deficiency prevents the failure of neutrophil migration, it was found that neutrophils derived from toll-like receptor 9-deficient mice with cecal ligation and puncture induced severe sepsis expressed high levels of chemokine C-X-C motif receptor 2 (CXCR2) and had reduced induction of G-protein-coupled receptor kinase 2. Conclusions: These findings suggest that the poor outcome of severe sepsis is associated with toll-like receptor 9 activation in neutrophils, which triggers G-protein-coupled receptor kinase 2 expression and CXCR2 downregulation. These events account for the reduction of neutrophil migration to the site of infection, with consequent spreading of the infection, onset of the systemic inflammatory response, and a decrease in survival. (Crit Care Med 2012; 40:2631-2637)
Resumo:
Neutrophil migration to inflamed sites is crucial for both the initiation of inflammation and resolution of infection, yet these cells are involved in perpetuation of different chronic inflammatory diseases. Gastrin-releasing peptide (GRP) is a neuropeptide that acts through G protein coupled receptors (GPCRs) involved in signal transmission in both central and peripheral nervous systems. Its receptor, gastrin-releasing peptide receptor (GRPR), is expressed by various cell types, and it is overexpressed in cancer cells. RC-3095 is a selective GRPR antagonist, recently found to have antiinflammatory properties in arthritis and sepsis models. Here we demonstrate that i.p. injection of GRP attracts neutrophils in 4 h, and attraction is blocked by RC-3095. Macrophage depletion or neutralization of TNF abrogates GRP-induced neutrophil recruitment to the peritoneum. In vitro, GRP-induced neutrophil migration was dependent on PLC-beta 2, PI3K, ERK, p38 and independent of G alpha i protein, and neutrophil migration toward synovial fluid of arthritis patients was inhibited by treatment with RC-3095. We propose that GRPR is an alternative chemotactic receptor that may play a role in the pathogenesis of inflammatory disorders.
Resumo:
Das lrhA-Gen von E. coli kodiert für einen Transkriptionsregulator der LysR-Familie. Die Funktion von LrhA war ungeklärt und sollte durch Vergleich der Gesamt-mRNA aus einem E. coli-Wildtyp und einer isogenen lrhA-Mutante mit Hilfe von Genomanalysen untersucht werden. In der lrhA-Mutante war der mRNA-Gehalt vieler Gene um den Faktor 3 bis 80 erhöht. Es handelt sich um Flagellen-, Motilitäts- und Chemotaxisgene, bzw. um Gene der Typ 1 Fimbrien. Diese Ergebnisse wurden in Expressionsmessungen bestätigt. LrhA war in der Lage an den Promotor von flhDC zu binden, aber nicht an die Promotoren der übrigen Gene für Motilität und Chemotaxis. FlhDC kodiert für den übergeordneten Regulator FlhD2C2 der Fagellensynthese.LrhA war außerdem in der Lage an die Promotoren der Gene für Typ 1 Fimbrien fimA und fimE zu binden. Typ 1 Fimbrien stellen in E. coli Virulenzfaktoren dar. Eine Regulation weiterer Virulenzfaktoren durch LrhA konnte in DNA-Pathoarrays ausgeschlossen werden.LrhA ist damit ein wichtiger Transkriptionsregulator, der die Expression der Gene für Flagellen, Motilität, Chemotaxis und Typ 1 Fimbrien reguliert. FlhDC, fimA und fimE stellen dabei direkte Zielgene von LrhA dar. Außerdem konnte eine positive Autoregulation von LrhA nachgewiesen werden.
Resumo:
In questa tesi viene presentato il modello di Keller-Segel per la chemiotassi, un sistema di tipo parabolico-ellittico che appare nella descrizione di molti fenomeni in ambito biologico e medico. Viene mostrata l'esistenza globale della soluzione debole del modello, per dati iniziali sufficientemente piccoli in dimensione N>2. La scelta di dati iniziali abbastanza grandi invece può causare il blow-up della soluzione e viene mostrato sotto quali condizioni questo si verifica. Infine il modello della chemiotassi è stato applicato per descrivere una fase della malattia di Alzheimer ed è stata effettuata un'analisi di stabilità del sistema.
Resumo:
Enterovirus is the most common pathogen causing viral meningitis especially in children. Besides the blood-brain barrier (BBB) the choroid plexus, which forms the blood-cerebrospinal-fluid (CSF) barrier (BCSFB), was shown to be involved in the pathogenesis of enteroviral meningitis. In a human in vitro model of the BCSFB consisting of human choroid plexus papilloma cells (HIBCPP), the permissiveness of plexus epithelial cells for Echovirus 30 (EV30) was analyzed by immunoblotting and quantitative real-time PCR (Q-PCR). HIBCPP could be directly infected by EV30 from the apical as well as from the physiological relevant basolateral side. During an infection period of 5h no alterations of barrier function and cell viability could be observed. Analysis of the cytokine/chemokine-profile following enteroviral infection with a cytometric bead array (CBA) and Q-PCR revealed an enhanced secretion of PanGRO (CXCL1, CXCL2 and CXCL3), IL8 and CCL5. Q-PCR showed a significant upregulation of CXCL1, CXCL2 and CXCL3 in a time dependant manner. However, there was only a minor effect of HIBCPP-infection with EV30 on transepithelial T lymphocyte migration with or without the chemoattractant CXCL12. Moreover, CXCL3 did not significantly enhance T cell migrations. Therefore additional factors must be involved for the in vivo reported enhanced T cell migration into the CNS in the context of enteroviral meningitis. As HIBCPP are permissive for infection with EV30, they constitute a valuable human in vitro model to study viral infection at the BCSFB.
Resumo:
Polymorphonuclear neutrophils release ATP in response to stimulation by chemoattractants, such as the peptide N-formyl-methionyl-leucyl-phenylalanine. Released ATP and the hydrolytic product adenosine regulate chemotaxis of neutrophils by sequentially activating purinergic nucleotide and adenosine receptors, respectively. Here we show that that ecto-nucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1, CD39) is a critical enzyme for hydrolysis of released ATP by neutrophils and for cell migration in response to multiple agonists (N-formyl-methionyl-leucyl-phenylalanine, interleukin-8, and C5a). Upon stimulation of human neutrophils or differentiated HL-60 cells in a chemotactic gradient, E-NTPDase1 tightly associates with the leading edge of polarized cells during chemotaxis. Inhibition of E-NTPDase1 reduces the migration speed of neutrophils but not their ability to detect the orientation of the gradient field. Studies of neutrophils from E-NTPDase1 knock-out mice reveal similar impairments of chemotaxis in vitro and in vivo. Thus, E-NTPDase1 plays an important role in regulating neutrophil chemotaxis by facilitating the hydrolysis of extracellular ATP.
Resumo:
The immunomodulatory FTY720 (fingolimod) is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that acts by modulating sphingosine 1-phosphate (S1P) receptor signaling. In this study, we have developed and characterized two novel oxazolo-oxazole derivatives of FTY720, ST-968 and the oxy analog ST-1071, which require no preceding activating phosphorylation, and proved to be active in intact cells and triggered S1P1 and S1P3, but not S1P2, receptor internalization as a result of receptor activation. Functionally, ST-968 and ST-1071 acted similar to FTY720 to abrogate S1P-triggered chemotaxis of mouse splenocytes, mouse T cells and human U937 cells, and reduced TNFa- and LPS-stimulated endothelial cell permeability. The compounds also reduced TNFα-induced ICAM-1 and VCAM-1 mRNA expression, but restored TNFα-mediated downregulation of PECAM-1 mRNA expression. In an in vivo setting, the application of ST-968 or ST-1071 to mice resulted in a reduction of blood lymphocytes and significantly reduced the clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice comparable to FTY720 either by prophylactic or therapeutic treatment. In parallel to the reduced clinical symptoms, infiltration of immune cells in the brain was strongly reduced, and in isolated tissues of brain and spinal cord, the mRNA and protein expressions of ICAM-1 and VCAM-1, as well as of matrix metalloproteinase-9 were reduced by all compounds, whereas PECAM-1 and tissue inhibitor of metalloproteinase TIMP-1 were upregulated. In summary, the data suggest that these novel butterfly derivatives of FTY720 could have considerable implication for future therapies of multiple sclerosis and other autoimmune diseases.
Resumo:
Salmonella enterica subspecies 1 serovar Typhimurium is a common cause of gastrointestinal infections. The host's innate immune system and a complex set of Salmonella virulence factors are thought to contribute to enteric disease. The serovar Typhimurium virulence factors have been studied extensively by using tissue culture assays, and bovine infection models have been used to verify the role of these factors in enterocolitis. Streptomycin-pretreated mice provide an alternative animal model to study enteric salmonellosis. In this model, the Salmonella pathogenicity island 1 type III secretion system has a key virulence function. Nothing is known about the role of other virulence factors. We investigated the role of flagella in murine serovar Typhimurium colitis. A nonflagellated serovar Typhimurium mutant (fliGHI) efficiently colonized the intestine but caused little colitis during the early phase of infection (10 and 24 h postinfection). In competition assays with differentially labeled strains, the fliGHI mutant had a reduced capacity to get near the intestinal epithelium, as determined by fluorescence microscopy. A flagellated but nonchemotactic cheY mutant had the same virulence defects as the fliGHI mutant for causing colitis. In competitive infections, both mutants colonized the intestine of streptomycin-pretreated mice by day 1 postinfection but were outcompeted by the wild-type strain by day 3 postinfection. Together, these data demonstrate that flagella are required for efficient colonization and induction of colitis in streptomycin-pretreated mice. This effect is mostly attributable to chemotaxis. Recognition of flagellar subunits (i.e., flagellin) by innate immune receptors (i.e., Toll-like receptor 5) may be less important.
Resumo:
Eph receptors and their ligands (ephrins) play an important role in axonal guidance, topographic mapping, and angiogenesis. The signaling pathways mediating these activities are starting to emerge and are highly cell- and receptor-type specific. Here we demonstrate that activated EphB1 recruits the adaptor proteins Grb2 and p52Shc and promotes p52Shc and c-Src tyrosine phosphorylation as well as MAPK/extracellular signal-regulated kinase (ERK) activation. EphB1-mediated increase of cell migration was abrogated by the MEK inhibitor PD98059 and Src inhibitor PP2. In contrast, cell adhesion, which we previously showed to be c-jun NH2-terminal kinase (JNK) dependent, was unaffected by ERK1/2 and Src inhibition. Expression of dominant-negative c-Src significantly reduced EphB1-dependent ERK1/2 activation and chemotaxis. Site-directed mutagenesis experiments demonstrate that tyrosines 600 and 778 of EphB1 are required for its interaction with c-Src and p52Shc. Furthermore, phosphorylation of p52Shc by c-Src is essential for its recruitment to EphB1 signaling complexes through its phosphotyrosine binding domain. Together these findings highlight a new aspect of EphB1 signaling, whereby the concerted action of c-Src and p52Shc activates MAPK/ERK and regulates events involved in cell motility.
Resumo:
We study a system of three partial differential equations modelling the spatiotemporal behaviour of two competitive populations of biological species both of which are attracted chemotactically by the same signal substance. For a range of the parameters the system possesses a uniquely determined spatially homogeneous positive equilibrium (u?, v?) globally asymptotically stable within a certain nonempty range of the logistic growth coefficients.
Resumo:
We consider non-negative solution of a chemotaxis system with non constant chemotaxis sensitivity function X. This system appears as a limit case of a model formorphogenesis proposed by Bollenbach et al. (Phys. Rev. E. 75, 2007).Under suitable boundary conditions, modeling the presence of a morphogen source at x=0, we prove the existence of a global and bounded weak solution using an approximation by problems where diffusion is introduced in the ordinary differential equation. Moreover,we prove the convergence of the solution to the unique steady state provided that ? is small and ? is large enough. Numerical simulations both illustrate these results and give rise to further conjectures on the solution behavior that go beyond the rigorously proved statements.
Resumo:
In this paper we consider a system of three parabolic equations modeling the behavior of two biological species moving attracted by a chemical factor. The chemical substance verifies a parabolic equation with slow diffusion. The system contains second order terms in the first two equations modeling the chemotactic effects. We apply an iterative method to obtain the global existence of solutions using that the total mass of the biological species is conserved. The stability of the homogeneous steady states is studied by using an energy method. A final example is presented to illustrate the theoretical results.
Resumo:
In this paper we study non-negative radially symmetric solutions of a parabolic-elliptic Keller-Segel system. The system describes the chemotactic movement of cells under the additional circumstance that an external application of a chemo attractant at a distinguished point is introduced.