924 resultados para cavity QED
Resumo:
With the use of the quartz fiber spring balance, sorptions and desorptions of water on silica gel at 30°C were studied and the permanent and reproducible hysteresis loop was obtained. At different points on the desorption curve forming the loop, the gel was subjected to high tension glow electric discharge. As a result of the electric discharge, the gel at any point on the desorption curve shifts to a corresponding point on the sorption curve. This is due to the release from the cavities of gel of the entrapped water held in a metastable state. The electric discharge has no effect on the gel at different points on portions of the desorption curve which coincide with the sorption curve and also on the sorption curve itself, indicating the absence of entrapped water in the gel in these regions. The results afford direct experimental evidence of the reality of the cavity theory of sorption-desorption hysteresis.
Resumo:
The hydrophobic effect is widely believed to be an important determinant of protein stability. However, it is difficult to obtain unambiguous experimental estimates of the contribution of the hydrophobic driving force to the overall free energy of folding. Thermodynamic and structural studies of large to small substitutions in proteins are the most direct method of measuring this contribution. We have substituted the buried residue Phe8 in RNase S with alanine, methionine, and norleucine, Binding thermodynamics and structures were characterized by titration calorimetry and crystallography, respectively. The crystal structures of the RNase S F8A, F8M, and F8Nle mutants indicate that the protein tolerates the changes without any main chain adjustments, The correlation of structural and thermodynamic parameters associated with large to small substitutions was analyzed for nine mutants of RNase S as well as 32 additional cavity-containing mutants of T4 lysozyme, human lysozyme, and barnase. Such substitutions were typically found to result in negligible changes in Delta C-p and positive values of both Delta Delta H degrees and aas of folding. Enthalpic effects were dominant, and the sign of Delta Delta S is the opposite of that expected from the hydrophobic effect. Values of Delta Delta G degrees and Delta Delta H degrees correlated better with changes in packing parameters such as residue depth or occluded surface than with the change in accessible surface area upon folding. These results suggest that the loss of packing interactions rather than the hydrophobic effect is a dominant contributor to the observed energetics for large to small substitutions. Hence, estimates of the magnitude of the hydrophobic driving force derived from earlier mutational studies are likely to be significantly in excess of the actual value.
Resumo:
An investigation of the initiation and growth of erosion and of the effect of velocity and pressure on erosion in a rotating disk is presented. Also, the role of an intervening noncavitating period on erosion is studied. The results indicate that at high intensities the peak rate of erosion decreases with increases in pressure. The erosion rate/time curves obtained for metallic materials are explained by the eroded particle distribution and the cavity size. The average size of the eroded particles decreased when pressure and tensile strength of the material were increased. The erosion rate peaked after an intervening noncavitating period. The use of the rate of erosion, defined as an average over the entire test duration, in the equation governing the theory of erosion resulted in reasonably good correlations. The correlations reveal that it is possible to predict the length, width, and area of a cavity when the cavitation parameter σ is known. The normalized width of a cavity may be estimated if its normalized length is known.
Resumo:
In (2+1)-dimensional quantum electrodynamics with massless photons and massive matter fields, it is shown that the mass renormalization of the latter is infrared divergent at one loop. This result remains unchanged at two loops. A simple argument based on a similar divergence of the Coulomb potential leads us to conjecture that charged states are not observable in this model. This argument holds in 1+1 dimensions also.
Resumo:
The collapse of a spherical (cylindrical) cavity in air is studied analytically. The global solution for the entire domain between the sound front, separating the undisturbed and the disturbed gas, and the vacuum front is constructed in the form of infinite series in time with coefficients depending on an ldquoappropriaterdquo similarity variable. At timet=0+, the exact planar solution for a uniformly moving cavity is assumed to hold. The global analytic solution of this initial boundary value problem is found until the collapse time (=(gamma–1)/2) for gamma le 1+(2/(1+v)), wherev=1 for cylindrical geometry, andv=2 for spherical geometry. For higher values of gamma, the solution series diverge at timet — 2(beta–1)/ (v(1+beta)+(1–beta)2) where beta=2/(gamma–1). A close agreement is found in the prediction of qualitative features of analytic solution and numerical results of Thomaset al. [1].
Resumo:
We study the scattering of hard external particles in a heat bath in a real-time formalism for finite temperature QED. We investigate the distribution of the 4-momentum difference of initial and final hard particles in a fully covariant manner when the scale of the process, Q, is much larger than the temperature, T. Our computations are valid for all T subject to this constraint. We exponentiate the leading infra-red term at one-loop order through a resummation of soft (thermal) photon emissions and absorptions. For T > 0, we find that tensor structures arise which are not present at T = 0. These carry thermal signatures. As a result, external particles can serve as thermometers introduced into the heat bath. We investigate the phase space origin of log (Q/M) and log (Q/T) terms.
Resumo:
The present paper reports the results of a theoretical study of the forces and factors driving the solubilization of n-alkane solubilizates into the micellar core of some non-ionic surfactants, based on a micellar model which includes the cavity forming free energy as a component of micellization. The solubilizate is n-decane and the non-ionic surfactants considered are n-decyl-polyoxyethylene surfactants. The extent of solubilization, i.e. the mole fraction of the solubilizate within the core has been calculated. The results indicate that the incorporated solubilizate has more translational and rotational degrees of freedom as compared to those of the tail parts of the surfactants present in the core. This drives the total free energy of aggregation after solubilization into a more favourable direction. The results are in fair agreement with the experimental results.
Resumo:
Copper(l) complexes of 1,2-bis(diphenylphosphino)ethane (dppe) with a stoichiometry Cu-2(dppe)(3)(X)(2) [X- = CN- (1), SCN- (2), NO3- (3)] are obtained from direct reactions of CuX and dppe. The complexes are structurally and spectroscopically (NMR and IR) characterized. The structure of the [Cu-2(dPPe)(3)](2+) dication is similar to the structural motif observed in many other complexes with a chelating dppe and a bridging dppe connecting two copper centers. In complexes 1 -3, the anions are confined to the cavity formed by the phosphines which force a monodentate coordination mode despite the predominant bidentate/bridging character of the anions. The coordination angles rather than the thermochemical radii dictate the steric requirement of anions. While the solution behavior of 3, with nitrate, is similar to complexes studied earlier, complexes with pseudohalides exhibit new solution behavior. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In this article, a single-phase, one-domain macroscopic model is developed for studying binary alloy solidification with moving equiaxed solid phase, along with the associated transport phenomena. In this model, issues such as thermosolutal convection, motion of solid phase relative to liquid and viscosity variations of the solid-liquid mixture with solid fraction in the mobile zone are taken into account. Using the model, the associated transport phenomena during solidification of Al-Cu alloys in a rectangular cavity are predicted. The results for temperature variation, segregation patterns, and eutectic fraction distribution are compared with data from in-house experiments. The model predictions compare well with the experimental results. To highlight the influence of solid phase movement on convection and final macrosegregation, the results of the current model are also compared with those obtained from the conventional solidification model with stationary solid phase. By including the independent movement of the solid phase into the fluid transport model, better predictions of macrosegregation, microstructure, and even shrinkage locations were obtained. Mechanical property prediction models based on microstructure will benefit from the improved accuracy of this model.
Resumo:
Experimental studies were performed to investigate the role and influence of grain movement on macrosegregation and microstructure evolution during equiaxed solidification. Casting experiments were performed with a grain-refined Al-Cu alloy in a rectangular sand mold. For the aluminum alloy studied, the equiaxed grains are lighter than the bulk melt and thus float up. Experiments were designed to investigate floatation phenomena of equiaxed grains in the presence of thermosolutal convection. Cooling curves were recorded at key locations in both the casting and the chill. Quantitative image analysis and spatial chemical analysis were performed on the solidified casting to observe the chemical and microstructural inhomogeneity created by the melt convection and solid floatation. Several notable features that can be attributed to grain movement were observed in temperature histories, macrosegregation patterns, and microstructures. In our experiments, the floatation of grains influences the thermal conditions and the overall flow direction in the casting cavity. In some cases, the induced flow resulting from the grain movement caused a flow reversal. This in turn influences the solidification direction, microstructure evolution, and the overall macrosegregation behavior.
Resumo:
The flow in a square cavity is studied by solving the full Navier–Stokes and energy equations numerically, employing finite-difference techniques. Solutions are obtained over a wide range of Reynolds numbers from 0 to 50000. The solutions show that only at very high Reynolds numbers (Re [gt-or-equal, slanted] 30000) does the flow in the cavity completely correspond to that assumed by Batchelor's model for separated flows. The flow and thermal fields at such high Reynolds numbers clearly exhibit a boundary-layer character. For the first time, it is demonstrated that the downstream secondary eddy grows and decays in a manner similar to the upstream one. The upstream and downstream secondary eddies remain completely viscous throughout the range of Reynolds numbers of their existence. It is suggested that the behaviour of the secondary eddies may be characteristic of internal separated flows.
Resumo:
In this paper, we investigate the effect of vacuum sealing the backside cavity of a Capacitive Micromachined Ultrasonic Transducer (CMUT). The presence or absence of air inside the cavity has a marked effect upon the system parameters, such as the natural frequency, damping, and the pull-in voltage. The presence of vacuum inside the cavity of the device causes a reduction in the effective gap height which leads to a reduction in the pull-in voltage. We carry out ANSYS simulations to quantify this reduction. The presence of vacuum inside the cavity of the device causes stress stiffening of the membrane, which changes the natural frequency of the device. A prestressed modal analysis is carried out to determine the change in natural frequency due to stress stiffening. The equivalent circuit method is used to evaluate the performance of the device in the receiver mode. The lumped parameters of the device are obtained and an equivalent circuit model of the device is constructed to determine the open circuit receiving sensitivity of the device. The effect of air in the cavity is included by incorporating an equivalent compliance and an equivalent resistance in the equivalent circuit.