998 resultados para cattle-tick
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p. 38-39.
Resumo:
"September 9, 1912."
Resumo:
Descrevem-se 24 surtos de tristeza parasitária bovina no sertão paraibano, sendo 18 de anaplasmose por Anaplasma margimale, dois de babesiose por Babesia bigemina, dois por Babesia não identificada e dois por infecção mista de A. marginale e Babesia sp. Os surtos ocorreram entre agosto de 2007 a outubro de 2009, porém, com uma concentração dos surtos no final do período chuvoso e início do período seco de cada ano, sendo 22 em animais adultos e dois em bezerros de aproximadamente 11 meses. Dois surtos ocorreram em bovinos da raça Nelore, um em animais da raça Gir e os 21 restantes ocorreram em animais das raças Holandês, Pardo Suiço e mestiços das mesmas com zebuínos. Conclui-se que no sertão da Paraíba há áreas de instabilidade enzoótica, ocorrendo surtos de tristeza no final da época de chuvas, principalmente nas áreas de planaltos e serras da região da Borborema e em áreas úmidas como a Bacia do Rio do Peixe, Rio Piranhas e Rio Espinharas em que há a formação de microclimas favoráveis à sobrevivência do carrapato.
Resumo:
Background: The cattle tick, Rhipicephalus (Boophilus) microplus, economically impact cattle industry in tropical and subtropical regions of the world. The morphological and genetic differences among R. microplus strains have been documented in the literature, suggesting that biogeographical and ecological separation may have resulted in boophilid ticks from America/Africa and those from Australia being different species. To test the hypothesis of the presence of different boophilid species, herein we performed a series of experiments to characterize the reproductive performance of crosses between R. microplus from Australia, Africa and America and the genetic diversity of strains from Australia, Asia, Africa and America. Results: The results showed that the crosses between Australian and Argentinean or Mozambican strains of boophilid ticks are infertile while crosses between Argentinean and Mozambican strains are fertile. These results showed that tick strains from Africa (Mozambique) and America (Argentina) are the same species, while ticks from Australia may actually represent a separate species. The genetic analysis of mitochondrial 12S and 16S rDNA and microsatellite loci were not conclusive when taken separately, but provided evidence that Australian tick strains were genetically different from Asian, African and American strains. Conclusion: The results reported herein support the hypothesis that at least two different species share the name R. microplus. These species could be redefined as R. microplus (Canestrini, 1887) (for American and African strains) and probably the old R. australis Fuller, 1899 (for Australian strains), which needs to be redescribed. However, experiments with a larger number of tick strains from different geographic locations are needed to corroborate these results.
Resumo:
Background: Bovine anaplasmosis, caused by the rickettsial tick-borne pathogen Anaplasma marginale (Rickettsiales: Anaplasmataceae), is vectored by Rhipicephalus (Boophilus) microplus in many tropical and subtropical regions of the world. A. marginale undergoes a complex developmental cycle in ticks which results in infection of salivary glands from where the pathogen is transmitted to cattle. In previous studies, we reported modification of gene expression in Dermacentor variabilis and cultured Ixodes scapularis tick cells in response to infection with A. marginale. In these studies, we extended these findings by use of a functional genomics approach to identify genes differentially expressed in R. microplus male salivary glands in response to A. marginale infection. Additionally, a R. microplus-derived cell line, BME26, was used for the first time to also study tick cell gene expression in response to A. marginale infection. Results: Suppression subtractive hybridization libraries were constructed from infected and uninfected ticks and used to identify genes differentially expressed in male R. microplus salivary glands infected with A. marginale. A total of 279 ESTs were identified as candidate differentially expressed genes. Of these, five genes encoding for putative histamine-binding protein (22Hbp), von Willebrand factor (94Will), flagelliform silk protein (100Silk), Kunitz-like protease inhibitor precursor (108Kunz) and proline-rich protein BstNI subfamily 3 precursor (7BstNI3) were confirmed by real-time RT-PCR to be down-regulated in tick salivary glands infected with A. marginale. The impact of selected tick genes on A. marginale infections in tick salivary glands and BME26 cells was characterized by RNA interference. Silencing of the gene encoding for putative flagelliform silk protein (100Silk) resulted in reduced A. marginale infection in both tick salivary glands and cultured BME26 cells, while silencing of the gene encoding for subolesin (4D8) significantly reduced infection only in cultured BME26 cells. The knockdown of the gene encoding for putative metallothionein (93 Meth), significantly up-regulated in infected cultured BME26 cells, resulted in higher A. marginale infection levels in tick cells. Conclusions: Characterization of differential gene expression in salivary glands of R. microplus in response to A. marginale infection expands our understanding of the molecular mechanisms at the tick-pathogen interface. Functional studies suggested that differentially expressed genes encoding for subolesin, putative von Willebrand factor and flagelliform silk protein could play a role in A. marginale infection and multiplication in ticks. These tick genes found to be functionally relevant for tick-pathogen interactions will likely be candidates for development of vaccines designed for control of both ticks and tick-borne pathogens.
Resumo:
The number of repeats in repetitive DNA like micro- and minisatellites is often determined by polymerase chain reaction (PCR). When we counted repeats in an array of mitochondrial repeats in the cattle tick (Boophilus microplus) we found that the number of repeats increased during PCR. Multiplication of the repeats was independent of the primers used to amplify the region, the PCR annealing temperature and the length of the PCR product. The use of PCR to determine the number of repeats in arrays needs to be reassessed. For long repeats, a subset of samples should always be analysed by Southern blot hybridization to confirm the PCR results.
Resumo:
Tick saliva contains molecules that are inoculated at the site of attachment on their hosts in order to modulate local immune responses and facilitate a successful blood meal. Bovines express heritable, contrasting phenotypes of infestations with the cattle tick, Rhipicephalus (Boophilus) microplus: breeds of Bos taurus indicus are significantly note resistant than those of Bos taurus taurus. Tick saliva may contain molecules that interfere with adhesion of leukocytes to endothelium and resistant hosts may mount an inflammatory profile that is more efficient to hamper the tick`s blood meal. We show in vitro that adhesion of peripheral blood mononuclear cells to monolayers of cytokine-activated bovine umbilical endothelial cells was significantly inhibited by tick saliva. The inflammatory response to bites of adults of R. microplus mounted by genetically resistant and susceptible bovine hosts managed in the same pasture was investigated in vivo. The inflammatory infiltrates and levels of message coding for adhesion molecules were measured in biopsies of tick-bitten and control skin taken when animals of both breeds were exposed to low and high tick infestations. Histological studies reveal that cutaneous reactions of resistant hosts to bites of adult ticks contained significantly more basophils and eosinophils compared with reactions of the susceptible breed. Expression of the adhesion molecules - intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and P-selectin - was higher in adult-infested skin of susceptible hosts undergoing low infestations compared to resistant hosts; when host was exposed to high infestations expression of these adhesion molecules was down-regulated in both phenotypes of infestations. Expression of leukocyte adhesion glycoprotein-1 (LFA-1) was higher in skin from susceptible hosts undergoing low or high infestations compared to resistant hosts. Conversely, higher levels of E-selectin, which promotes adhesion of memory T cells, were expressed in skin of resistant animals. This finding may explain the resistant host`s ability to mount more rapid and efficient secondary responses that limit hematophagy and infestations. The expression profiles observed for adhesion molecules indicate that there are differences in the kinetics of the inflammatory reactions mounted by resistant and susceptible hosts and the balance between tick and host is affected by the number of tick bites a host receives. We show that the contrasting phenotypes of infestations seen in bovines infested with R. microplus are correlated with differences in the cellular and molecular composition of inflammatory infiltrates elicited by bites with adult ticks. (C) 2009 Published by Elsevier B.V.
Resumo:
Tick bites may trigger acute phase responses. Positive and negative acute phase proteins were measured in infested cattle genetically resistant and susceptible to ticks. During heavier infestations levels of haptoglobin increased significantly in susceptible bovines; levels of serum amyloid A increased in resistant bovines; levels of alpha-l-acid glycoprotein decreased significantly in resistant bovines; levels of transferrin decreased significantly in susceptible bovines. In conclusion, tick infestations trigger acute phase responses and enhancement of specific acute phase proteins differs according to the genetic composition of hosts. Acute phase proteins may constitute useful biological signatures for monitoring the stress induced by tick infestations. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
In this 2nd note upon the possibility of transmission of human leprosy by ticks, the A. relates his stepps to obtain the collaboration of his colleagues working in leprosaria in various States of Brazil, Argentina and Paraguay in such studies. Firstly the A. describes the positive results of examination of sediment of ticks, the cattle tick Boophilus microplus (Canestrini, 1888), received from Paraná (Leprosário São Roque) , which were put on active lepers, two of them sucking during 9 days and one during 7 days. Two out of three were killed for examination and were very strongly positive for acid-fast bacilli. A series of tubes of Loewenstein medium was smeared with the sediment of such ticks. Secondly the A. relates his personnal experiment, carried out in Rio de Janeiro, trying to infect normal ticks in lepers. The experiment with Boophilus microplus was negative and was twicely positive the experiment with Amblyomma cajennense Fabricius, 1794. The experiment is being in progress and will be continued in other places of Brazil. Finally, after being given the general characteristics of Boophilus microplus, the A. describes the non-chromogenic culture of a acid-fast bacillus isolated by him from sediment of ticks (Amblyomma cajennense) captured in lepers from Colônia Santa Isabel (Minas gerais), which parasitism was spontaneous. The first isolation was obtained in Loewenstein medium after 62 days incubation at 37°C. The culture is pure and the bacillus is permanent acid-fast. The plate1, in full color, represents this culture in its four generations. The colonies are pearl-white in color, dry, elevated and rough, developing slowly and beginning as white pinhead points scattered upon the surface of the medium. The culture is not yet rich enough to be inoculated into laboratory animals, which will be done when possible.
Resumo:
The AA. carried out experiments in the leprosarium São Roque, State of Paraná, South Brazil, to verify if the cattle tick Boophilus microplus could be experimentally infected in lepers, which was true. The AA. Tried also to be ascertained if Boophilus microplus and Amblyomma cajennense could change of hosts during their feedings which was true, both ticks continue feeding, the last species for many days, after being transferred from one to another leper. The junior A. describes in full their experiments and also a dermatites caused by tick bites. The senior A. brought to Rio de Janeiro most of the infected ticks for examination, which revealed a very high positivity. He smeared the sediments of lots of both species of ticks in Loewenstein medium and after a variable periode of incubation at 37° C. he obtained four new samples of cultures of acid-fast organisms, two from Amblyomma cajennense and two from Boophilus microplus. These cultures are being studied and will be inoculated into laboratory animals. The senior A. inoculated new batches of white rats with sediments of many ticks infected in lepers. Various hypotheses of both previous notes upon the subject now are verified facts. The A. is accumulating facts to draw the conclusions in the future. He also suggested the leprosy workers in the interior of the country to cooperate with him in such important studies, specially in the habitat of lepers in the rural zones of various States.
Resumo:
The diagnosis of tick-borne diseases such as babesiosis still depends on observing the parasite in the infected erythrocyte. Microscopic observation is tedious and often problematic in both early and carrier infections. Better diagnostic methods are needed to prevent clinical disease, especially when susceptible cattle are being moved into disease enzootic areas. This study evaluates two techniques for early diagnosis of Babesia bovis infections in cattle, DNA probes specific for the organism and fluorescent probes specific nucleic acid. The radioisotopically labeled DNA probes are used in slot blot hybridizations whith lysed blood samples, not purified DNA. Thusfar, the probe is specific for B. bovis and can detect as few as 1000 B. bovis parasites in 10µl of blood. The specificity of the fluorescent probe depends on the characteristic morphology of the babesia in whole blood samples, as determined microscopically. The fluorescent probe detects as afew as 10,000 B. bovis parasites in 10*l as blood. The application of each method for alboratory and field use is discussed.
Resumo:
Current methods for the control of the cattle tick Boophils microplus and the agent of bovine babesiosis, Babesia bovis are unsatisfactory. Effective immunological control of both parasites would have great advantages. However, naturally acquired immunity to the tick is generally unable to prevent serious production losses. A vaccine against the tick, based on a novel form of immunization, is being developed. A protective antigen has been isolated from the tick, characterized and produced as an effective, recombinant protein. A vaccine incorporating this antigen is currently undergoing field trials. In the Australian situation, improved tick control will probably increase endemic instability with respect to B. bovis. Fortunately, a trivalent, recombinant B. bovis vaccine has also been developed. This too is now undergoing pre-registration field trials.
Resumo:
Transcripts similar to those that encode the nonstructural (NS) proteins NS3 and NS5 from flaviviruses were found in a salivary gland (SG) complementary DNA (cDNA) library from the cattle tick Rhipicephalus microplus.Tick extracts were cultured with cells to enable the isolation of viruses capable of replicating in cultured invertebrate and vertebrate cells. Deep sequencing of the viral RNA isolated from culture supernatants provided the complete coding sequences for the NS3 and NS5 proteins and their molecular characterisation confirmed similarity with the NS3 and NS5 sequences from other flaviviruses. Despite this similarity, phylogenetic analyses revealed that this potentially novel virus may be a highly divergent member of the genus Flavivirus. Interestingly, we detected the divergent NS3 and NS5 sequences in ticks collected from several dairy farms widely distributed throughout three regions of Brazil. This is the first report of flavivirus-like transcripts inR. microplus ticks. This novel virus is a potential arbovirus because it replicated in arthropod and mammalian cells; furthermore, it was detected in a cDNA library from tick SGs and therefore may be present in tick saliva. It is important to determine whether and by what means this potential virus is transmissible and to monitor the virus as a potential emerging tick-borne zoonotic pathogen.