968 resultados para cation vacancy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Al-4.4 a/oZn and Al-4.4 a/oZn with Ag, Ce, Dy, Li, Nb, Pt, Y, or Yb, alloys have been investigated by resistometry with a view to study the solute-vacancy interactions and clustering kinetics in these alloys. Solute-vacancy binding energies have been evaluated for all these elements by making use of appropriate methods of evaluation. Ag and Dy additions yield some interesting results and these have been discussed in the thesis. Solute-vacancy binding energy values obtained here have been compared with other available values and discussed. A study of the type of interaction between vacancies and solute atoms indicates that the valency effect is more predominant than the elastic effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chenodeoxycholic acid based PET sensors for alkali metal ions have been immobilized on Merrifield resin and on Tentagel. The fluorescence of the sensor beads is enhanced upon binding the cations. The modular nature of the sensor allows designing different sensors based on this concept.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new soft-chemical transformation of layered perovskite oxides is described wherein K2O is sequentially extracted from the Ruddlesden-Popper (R-P) phase, K2La2Ti3O10 (I), yielding novel anion-deficient KLa2Ti3O9.5 (II) and La2Ti3O9 (III). The transformation occurs in topochemical reactions of the R-P phase I with PPh4Br and PBu4Br (Ph = phenyl; Bu = n-butyl). The mechanism involves the elimination of KBr accompanied by decomposition of PR4+ (R = phenyl or n-butyl) that extracts oxygen from the titanate. Analysis of the organic products of decomposition reveals formation of Ph3PO, Ph3P, and Ph-Ph for R = phenyl, and Bu3PO, Bu3P along with butane, butene, and octane for R = butyl. The inorganic oxides II and III crystallize in tetragonal structures (II: P4/mmm, a = 3.8335(1) angstrom, c = 14.334(1) angstrom; III: /4/ mmm, a = 3.8565(2) angstrom, c = 24.645(2) angstrom) that are related to the parent R-P phase. II is isotypic with the Dion-Jacobson phase, RbSr2Nb3O10, while III is a unique layered oxide consisting of charge-neutral La2Ti3O9 anion-deficient perovskite sheets stacked one over the other without interlayer cations. Interestingly, both II and III convert back to the parent R-P phase in a reaction with KNO3. While transformations of the R-P phases to other related layered/three-dimensional perovskite oxides in ion-exchange/metathesis/dehydration/reduction reactions are known, the simultaneous and reversible extraction of both cations and anions in the conversions K2La2Ti3O10 reversible arrow KLa2Ti3O9.5 reversible arrow La2Ti3O9 is reported here for the first time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two segmented polyethylene oxides, SPEO-3 and SPEO-4, were prepared using a novel transetherification methodology. Their structures were confirmed by H-1 and C-13 NMR spectroscopy. The complexation of these SPEO's with alkali-metal ions in solution was investigated by C-13 NMR spectroscopy. The mole-fraction method was used to determine the complexation ratio of SPEO with LIClO4 at 25 degrees C, which showed that these formed 1:1 (polymer repeat unit/salt) complexes. The association constant, K, for the complex formation was calculated from the variation of the chemical shift values with salt concentration, using a standard nonlinear least-square fitting procedure. The maximum change in chemical shift (Delta delta) and the K values suggest that both SPEO-3 and SPEO-4 formed stronger complexes with lithium salts than with sodium salts. Unexpectedly, the K values were found to be different, when the variation of delta of different carbons was used in the fitting procedure. This suggests that several possible complexed species may be in equilibrium with the uncomplexed one. Structurally similar model compounds were also prepared and their complexation studies indicated that all of them also formed 1:1 complexes with Li salts. Interestingly, it was observed that the polymers gave higher K values suggesting the formation of more stable complexes in polymers when compared to the model analogues. (C) 2000 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of TlSr(2−x)LaxCuO(5+δ), with x=0.5, 0.75 and 1, and Tl.5Pb0.5Sr2CuO(5+δ) have been examined with X-ray and neutron powder Rietveld refinement. They are isostructural (P4/mmm) with the corresponding thallium-barium cuprate having one Cu-O layer with Cu3+ ions in octahedral coordination with oxygen (structure type 1201). The influence of cation substitution and disorder on the structure and superconducting properties of these phases have been investigated. La3+ substitution for Sr2+ stabilises the structure and reduces Cu3+, permitting superconductivity, while Pb2+ substitution for Tl3+ only stabilises the structure, without reducing Cu3+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following an earlier study (J. Am. Chem Soc. 2007, 129, 4470) describing a very unusual growth kinetics of ZnO nanoparticles, we critically evaluate here the proposed mechanism involving a crucial role of the alkali base ion in controlling the growth of ZnO nanoparticles using other alkali bases, namely, LiOH and KOH. While confirming the earlier conclusion of the growth of ZnO nanoparticles being hindered by an effective passivating layer of cations present in the reaction mixture and thereby generalizing this phenomenon, present experimental data reveal an intriguing nonmonotonic dependence of the passivation efficacy on the ionic size of the alkali base ion. This unexpected behavior is rationalized on the basis of two opposing factors: (a) solvated cationic radii and (b) dissociation constant of the base.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of layered perovskite oxides of the formula K1-xLaxCa2-xNb3O10 for 0 < x ≤ 1.0 have been prepared. All the members are isostructural, possessing the structure of KCa2Nb3O10. The interlayer potassium ions in the new series can be ion-exchanged with protons to give H1-xLaxCa2-xNb3O10. The latter readily forms intercalation compounds of the formula (CnH2n+1NH3)1-x LaxCa2-xNb3O10, just as the parent solid acid HCa2Nb3O10. The end member LaCaNb3O10 containing no interlayer cations is a novel layered perovskite oxide, being a n = 3 member of the series An-1BnX3n+1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceric ammonium sulfate, CAS, oxidizes naphthalene to 1,4-naphthoquinone in essentially quantitative yield in CH3CN-dil. H2SO4. Stoichiometric studies indicate that 6 mol of CAS are required for the oxidation of 1 mol of naphthalene to 1,4-naphthoquinone. Kinetic investigations reveal that the reaction takes place through initial formation of a 1:1 complex of naphthalene and cerium(IV) in an equilibrium step followed by slow decomposition of the complex to naphthalene radical cation. Kinetic results on the effects of acid strength, polarity of the medium, temperature and substituents are in accordance with this mechanism. Further conversion of the radical cation into 1,4-naphthoquinone takes place in fast steps involving a further 5 mol of cerium(IV) and 2 mol of H2O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a large decrease in tetragonal to cubic phase transformation temperature when grain size of bulk CuFe2O4 is reduced by mechanical ball milling. The change in phase transformation temperature was inferred from in situ high temperature conductivity and x-ray diffraction measurements. The decrease in conductivity with grain size suggests that ball milling has not induced any oxygen vacancy while the role of cation distribution in the observed decrease in phase transformation temperature is ruled out from in-field Fe-57 Mossbauer and extended x-ray absorption fine structure measurements. The reduction in the phase transformation temperature is attributed to the stability of structures with higher crystal symmetry at lower grain sizes due to negative pressure effect. (C) 2011 American Institute of Physics. doi: 10.1063/1.3493244]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of two (4n+2)-electron conjugated systems in perpendicular planes results in considerable aromatic stabilization. Despite having two fewer hydrogens, the 6 pi e-2 sigma e 3,5-dehydrophenyl cation (C6H3+, 1) is 32.7 (CCSD(T)/6-31G**) and 35.2 kcal/mol (RMP4sdtq/6-3iG*//RMP2(fu)/6-31G*) more stable than the phenyl cation (evaluated by an isodesmic reaction involving benzene and m-dehydrobenzene (4)). Cation 1, the global C6H3+ minimum, is 11.7,24.2, 11.8, and 30.4 kcal/mol lower in energy than the 2,6- (11) and 3,4-dehydrophenyl (12) cations as well as the open-chain isomers 13 and 14 (RMP4sdtq/6-31G*//RMP2(fu)/6-31G* + ZPE(RMP2(fu)/6-31G*)). The stability of 1 is increased hyperconjugatively by 2,4,6-trisilyl substitution. The double aromaticity of 1 is indicated by the computed magnetic susceptibility exaltations (IGLO/II//RMP2(fu)/6-31G*) of -5.2, -6.8, -15, and -23.2 relative to 11, 12, 13, and 14, respectively. Thus, 1 fulfills the geometric, energetic, and magnetic criteria of aromaticity. The double aromaticity of the D-6h cyclo[6]carbon is apparent from the same criteria

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supercapacitor properties of MnO2 are studied generally in aqueous alkali metal salt solutions, often in a Na salt solution. During electrochemical discharge-charge processes, Na+ ions from the electrolyte get reversibly inserted/deinserted on the surface of MnO2 particles, which leads to redox reaction between MnOONa and MnO2. In the present study, it has been shown that MnO2 exhibits enhanced capacitance behaviour in a rare earth metal salt solution, namely, La(NO3)(3) solution in comparison with NaNO3 and Mg(NO3)(2) aqueous solutions. The specific capacitance increases with an increase in charge on the solution cation (Na+, Mg2+ and La3+). It is proposed that the number of surface sites for adsorption of cations remains unaltered in all solutions. The surface insertion of cation facilitates the reduction of Mn4+ in MnO2 to Mn3+ equivalent to the charge present on the cation. As the specific capacitance is related to the quantity of charge that is exchanged between the solid MnO2 and the aqueous solution, the trivalent cation (La3+) provides greater specific capacitance than in Mg(NO3)(2) and NaNO3 electrolytes. Accordingly, the number of Mn(IV)/Mn(III) redox pairs involved in the neighbourhood of the adsorption site is one, two and three when Na+, Mg2+ and La3+ ions, respectively, are adsorbed. (C) 2011 The Electrochemical Society. DOI: 10.1149/1.3565177] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ion transport across phospholipid vesicles was studied by 7Li and 23Na-NMR using an aqueous anionic paramagnetic shift reagent, dysprosium nitrilotriacetate [Dy(NTA)2]3?, mediated by ionophores, lasalocid A and A23187. The intra- and extracellular 7Li and 23Na-NMR signals were well separated (20?Hz) at mM concentration of the shift reagent. The observed data on the rate constant for lithium transport across DPPC vesicles at various concentrations of the ionophores indicated that lasalocid A is a more efficient carrier for lithium ion compared with the sodium ion transport by this ionophore, while A23187 was not specific to either of the ions (Li or Na). ©1998 European Peptide Society and John Wiley & Sons, Ltd.