614 resultados para cathode


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel carbon-supported palladium-rich Pd3Pt1/C catalyst prepared by a modified polyol process showed a better cell performance than Pt/C in direct methanol fuel cells, which may be attributed to palladium's inactivity to methanol electro-oxidation while exhibiting good performance to oxygen reduction reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Black Pearls 2000 (designated as BP- 2000) and Vulcan XC-72 (designated as XC-72) carbon blacks were chosen as supports to prepare 40 wt % (the targeted value) Pt/C catalysts by a modified polyol process. The carbon blacks were characterized by N-2 adsorption and Fourier tranform infrared spectroscopy. The prepared catalysts were characterized by inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy, scanning electron microscopy (SEM), in situ cyclic voltammetry, and current-voltage curves. On BP- 2000, Pt nanoparticles were larger in size and more unevenly distributed than on XC-72. It was observed by SEM that the corresponding catalyst layer on BP- 2000 was thicker than that of XC-72 based catalyst at almost the identical catalyst loading. And the BP- 2000 supported catalyst gave a better single cell performance at high current densities. These results suggest that the performance improvement is due to the enhanced oxygen diffusion and water removal capability when BP- 2000 is used as cathode catalyst support. (C) 2004 The Electrochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 40 wt% Pt/C cathode electrocatalyst with controlled Pt particle size of similar to 2.9 nm showing better performance than commercial catalyst for direct methanol fuel cell was prepared by a polyol process with water but without using stabilizing agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An improved aqueous impregnation method was used to prepare 40 wt% Pt/C electrocatalysts. TEM analysis of the samples showed that the Pt particles impregnated for a short time have a very narrow size distribution in the range of 1-4 nm with an average size of 2.6 nm. UV-vis spectroscopy measurements verified that the redox reaction between PtCl62- and formaldehyde took place with a slow rate at ambient temperature via a two-step reaction path, where PtCl42- serves as an intermediate. The use of the short-time-impregnated 40 wt% Pt/C as cathode electrocatalysts in direct methanol fuel cells yields better performance than that of commercial 40 wt% Pt/C electrocatalyst. Experimental evidence provides clues for the fundamental understanding of elementary steps of the redox reactions, which helps in guiding the design and preparation of highly dispersed Pt catalyst for fuel cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiwalled carbon nanotube-supported Pt (Pt/MWNT) nanocomposites were prepared by both the aqueous solution reduction of a Pt salt (HCHO reduction) and the reduction of a Pt ion salt in ethylene glycol solution. For comparison, a Pt/XC-72 nanocomposite was also prepared by the EG method. The Pt/MWNT catalyst prepared by the EG method has a high and homogeneous dispersion of spherical Pt metal particles with a narrow particle-size distribution. TEM images show that the Pt particle size is in the range of 2-5 nm with a peak at 2.6 nm, which is consistent with 2.5 nm obtained from the XRD broadening calculation. Surface chemical modifications of MWNTs and water content in EG solvent are found to be the key factors in depositing Pt particles on MWNTs. In the case of the direct methanol fuel cell (DMFC) test, the Pt/MWNT catalyst prepared by EG reduction is slightly superior to the catalyst prepared by aqueous reduction and displays significantly higher performance than the Pt/XC-72 catalyst. These differences in catalytic performance between the MWNT-supported or the carbon black XC-72-supported catalysts are attributed to a greater dispersion of the supported Pt particles when the EG method is used, in contrast to aqueous HCHO reduction and to possible unique structural and higher electrical properties when contrasting MWNTs to carbon black XC-72 as a support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multilayer film of laccase, poly-L-lysine (PLL) and multi-walled carbon nanotubes (MWNTs) were prepared by a layer-by-layer self-assembly technique. The results of the UV-vis spectroscopy and scanning electron microscopy studies demonstrated a uniform growth of the multilayer. The catalytic behavior of the modified electrode was investigated. The (MWNTs/PLL/laccase)(n) multilayer modified electrode catalyzed four-electron reduction of O-2 to water, without any mediator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembled monolayers (SAMs) of a series of p-substituted benzoyl chlorides were formed on indium tin oxide as the cathode for the fabrication of inverted bottom-emitting organic light-emitting diodes (IBOLEDs). The studies on the efficiency of electron injection and device performances showed that the direct tunneling of electron and the formation of dipole associated with the monolayer-forming molecule lead to significant enhancement in electron injection. Consequently, the device efficiency is greatly improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report enhanced polymer photovoltaic (PV) cells by utilizing ethanol-soluble conjugated poly (9, 9-bis (6'-diethoxylphosphorylhexyl) fluorene) (PF-EP) as a buffer layer between the active layer consisting of poly(3-hexylthiophene)/[6, 6]-phenyl C61-butyric acid methyl ester blend and the Al cathode. Compared to the control PV cell with Al cathode, the introduction of PF-EP effectively increases the shunt resistance and improves the photo-generated charge collection since the slightly thicker semi-conducting PF-EP layer may restrain the penetration of Al atoms into the active layer that may result in increased leakage current and quench photo-generated excitons. The power conversion efficiency is increased ca. 8% compared to the post-annealed cell with Al cathode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been found that cesium hydroxide (CsOH) doped tris(8-hydroxyquinoline) aluminum (Alq(3)) as an interfacial modification layer on indium-tin-oxide (ITO) is an effective cathode structure in inverted bottom-emission organic light-emitting diodes (IBOLEDs). The efficiency and high temperature stability of IBOLEDs with CsOH:Alq(3) interfacial layer are greatly improved with respect to the IBOLEDs with the case of Cs2CO3:Alq(3). Herein, we have studied the origin of the improvement in efficiency and high temperature stability via the modification role of CsOH:Alq(3) interfacial layer on ITO cathode in IBOLEDs by various characterization methods, including atomic force microscopy (AFM), ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy (XPS) and capacitance versus voltage (C-V). The results clearly demonstrate that the CsOH:Alq(3) interfacial modification layer on ITO cathode not only enhances the stability of the cathode interface and electron-transporting layer above it. which are in favor of the improvement in device stability, but also reduces the electron injection barrier and increases the carrier density for current conduction, leading to higher efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium acetylacetonate [Li(acac)] covered with aluminium was used as an efficient electron injection layer in organic light-emitting devices (OLEDs) consisting of NPB as the hole transport layer and Alq(3) as the electron transport and light emitting layer, resulting in lower turn- on voltage and increased current efficiency. The turn- on voltage (the voltage at a luminance of 1 cd m(-2)) was decreased from 5.5 V for the LiF/Al and 4.4 V for Ca/Al to 4.0 V for Li(acac)/Al, and the device current efficiency was enhanced from 4.71 and 5.2 to 7.0 cd A(-1). The performance tolerance to the layer thickness of Li(acac) is also better than that of the device with LiF. LiF can only be used when deposited as an ultra- thin layer because of its highly insulating nature, while the Li(acac) can be as thick as 5 nm without significantly affecting the EL performance. We suppose that the free lithium released from Li(acac) improves the electron injection when Li(acac) is covered with an Al cathode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient blue polymer light-emitting diodes (PLEDs) have been fabricated with a neutral alcohol-soluble polyfluorene, i.e., poly(9,9-bis(6(')-diethoxylphosphorylhexyl)fluorene) (PF-EP), as the emitting layer, high work-function Al as the cathode, and poly(vinyl carbazole) as the hole-transporting layer. The PLEDs display a maximum luminous efficiency of 4.0 cd/A and the luminous efficiency > 2.4 cd/A in a wide range of current densities. It is found that the promising performance of the devices is attributed to the fact that the PF-EP is not only an efficient blue light-emitting polymer, but it also can facilitate efficient electron injection at the Al/PF-EP interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Al/Ni bilayer cathode was used to improve the electroluminescent (EL) efficiency and stability in N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1' biphenyl 4,4'-dimaine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq(3))-based organic light-emitting diodes. The device with LiF/Al/Ni cathode achieved a maximum power efficiency of 2.8 lm/W at current density of 1.2 mA/cm(2), which is 1.4 times the efficiency of device with the state-of-the-art LiF/Al cathode. Importantly, the device stability was significantly enhanced due to the utilization of LiF/Al/Ni cathode. The lifetime at 30% decay in luminance for LiF/Al/Ni cathode was extrapolated to 400 It at an initial luminance of 100 cd/m(2), which is 10 times better than the LiF/Al cathode.