864 resultados para cardiac ischemia reperfusion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJETIVO: Avaliar em um modelo experimental de isquemia-reperfusão hepática os efeitos da injeção intraluminal de glutamina na capacidade anti-oxidante total em equivalência ao trolox (TEAC) do plasma, verificando a aplicabilidade de modificações ao método original de dosagem. MÉTODOS: Trinta ratos Wistar foram submetidos a laparotomia e confecção de uma alça fechada de 20 cm de comprimento envolvendo o intestinal delgado distal seguido do clampeamento do hilo hepático por 30 minutos e reperfusão por 5 minutos. Na alça fechada foi injetada glutamina (grupo glutamina; n=10) ou água destilada (grupo controle; n=10). Em dez animais (grupo sham) não foi realizado clampeamento hilar. Coletou-se sangue para dosagem da capacidade antioxidante total em equivalência ao trolox em condições modificadas de temperatura, proporções relativas dos reagentes e tempo de leitura sob espectrofotometria. RESULTADOS: A capacidade antioxidante total foi significantemente maior (p<0.05) no grupo glutamina que no grupo controle (1,60[1,55-1,77] vs 1,44[1,27-1,53]) e grupo sham (1,60[1,55-1,77] vs 1,48[1,45-1,59]). Não houve diferenças estatísticas entre o grupo controle e o grupo sham. CONCLUSÃO: A glutamina melhorou a capacidade anti-oxidante total plasmática. O método de dosagem refletiu consistentemente alterações na defesa anti-oxidante nesse modelo experimental.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the effect of parecoxib (an NSAID) on renal function by measuring plasma NGAL (serum neutrophil gelatinase-associated lipocalin) levels in an induced-ischemia rat model. METHODS: Forty male Wistar rats were randomly assigned to one of four groups: Ischemia (I), Ischemia/parecoxib (IP), No-ischemia (NI), and No-ischemia/parecoxib (NIP). Body weight, mean arterial pressure, heart rate, body temperature, NGAL levels, and renal histology were compared across groups. RESULTS: The Ischemia (I) group, which did not receive parecoxib, showed the highest NGAL levels (p=0.001), while the IP group, which received the medication, had NGAL levels similar to those of the non-ischemic (NI and NIP) groups. CONCLUSION: Parecoxib resulted in renal protection in this experimental model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Ischemic acute kidney injury is a common occurrence in the perioperative period and in critical patients admitted to intensive care units. The reestablishment of blood supply may worsen injury through the ischemia-reperfusion (I/R) mechanism. We investigated the effect of dexmedetomidine on the kidneys of rats subjected to an experimental I/R model. Methods: 34 rats anesthetized with isoflurane was undergone right nephrectomy and randomly assigned to four groups: Control C (saline solution); Dexmedetomidine D (dexmedetomidine); Sham S (saline solution); Sham with Dexmedetomidine SD (dexmedetomidine). The serum levels of neutrophil gelatinase-associated lipocalin (NGAL) were measured at time-points T1 (following stabilization), T2 (ischemia), T3 (reperfusion), T4 (12 h after of I/R). The kidneys were subjected to histological examination. Results: The NGAL levels were significantly higher at T4 compared with T1. Upon histological examination, the left kidneys in groups C and D exhibited a similar extent of cell injury. Conclusion: The levels of NGAL did not indicate either protection against or worsening of kidney injury. Histological examination for acute tubular necrosis showed that dexmedetomidine did not protect the kidneys from I/R.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To investigate the effect of lovastatin on renal ischemia followed by reperfusion. METHODS: Thirty one Wistar rats submitted to left renal ischemia for 60 minutes followed by contralateral nephrectomy were divided into two groups: A (n = 17, control, no treatment), and B (n = 14, lovastatin 15 mg/kg/day p.o. ten days before ischemia). The animals were sacrificed at the end of ischemia, after 24 hours and at seven days after reperfusion. Survival, serum urea and creatinine levels and renal mitochondrial function were evaluated. RESULTS: Mortality was 29.4% in group A and 0.7% in group B. Urea and creatinine levels were increased in both groups, but the values were significantly lower in group B. Mitochondrial function showed decoupling in 83.4% of group A, as opposed to 38.4/% of group B. CONCLUSIONS: The result shows a protective action of renal function by lovastatin administered before ischemia/reperfusion. Since most of the mitochondrial fraction presented membranes with the ability to maintain ATP production in group B, stabilization of the mitochondrial membrane should be considered as part of the protective action of lovastatin on renal function in ischemia/reperfusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ischemia/reperfusion injury (IRI) is a leading cause of acute renal failure. The definition of the molecular mechanisms involved in renal IRI and counter protection promoted by ischemic pre-conditioning (IPC) or Hemin treatment is an important milestone that needs to be accomplished in this research area. We examined, through an oligonucleotide microarray protocol, the renal differential transcriptome profiles of mice submitted to IRI, IPC and Hemin treatment. After identifying the profiles of differentially expressed genes observed for each comparison, we carried out functional enrichment analysis to reveal transcripts putatively involved in potential relevant biological processes and signaling pathways. The most relevant processes found in these comparisons were stress, apoptosis, cell differentiation, angiogenesis, focal adhesion, ECM-receptor interaction, ion transport, angiogenesis, mitosis and cell cycle, inflammatory response, olfactory transduction and regulation of actin cytoskeleton. In addition, the most important overrepresented pathways were MAPK, ErbB, JAK/STAT, Toll and Nod like receptors, Angiotensin II, Arachidonic acid metabolism, Wnt and coagulation cascade. Also, new insights were gained about the underlying protection mechanisms against renal IRI promoted by IPC and Hemin treatment. Venn diagram analysis allowed us to uncover common and exclusively differentially expressed genes between these two protective maneuvers, underscoring potential common and exclusive biological functions regulated in each case. In summary, IPC exclusively regulated the expression of genes belonging to stress, protein modification and apoptosis, highlighting the role of IPC in controlling exacerbated stress response. Treatment with the Hmox1 inducer Hemin, in turn, exclusively regulated the expression of genes associated with cell differentiation, metabolic pathways, cell cycle, mitosis, development, regulation of actin cytoskeleton and arachidonic acid metabolism, suggesting a pleiotropic effect for Hemin. These findings improve the biological understanding of how the kidney behaves after IRI. They also illustrate some possible underlying molecular mechanisms involved in kidney protection observed with IPC or Hemin treatment maneuvers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent investigation of the intestine following ischemia and reperfusion (I/R) has revealed that nitric oxide synthase (NOS) neurons are more strongly affected than other neuron types. This implies that NO originating from NOS neurons contributes to neuronal damage. However, there is also evidence of the neuroprotective effects of NO. In this study, we compared the effects of I/R on the intestines of neuronal NOS knockout (nNOS(-/-)) mice and wild-type mice. I/R caused histological damage to the mucosa and muscle and infiltration of neutrophils into the external muscle layers. Damage to the mucosa and muscle was more severe and greater infiltration by neutrophils occurred in the first 24 h in nNOS(-/-) mice. Immunohistochemistry for the contractile protein, alpha-smooth muscle actin, was used to evaluate muscle damage. Smooth muscle actin occurred in the majority of smooth muscle cells in the external musculature of normal mice but was absent from most cells and was reduced in the cytoplasm of other cells following I/R. The loss was greater in nNOS(-/-) mice. Basal contractile activity of the longitudinal muscle and contractile responses to nerve stimulation or a muscarinic agonist were reduced in regions subjected to I/R and the effects were greater in nNOS(-/-) mice. Reductions in responsiveness also occurred in regions of operated mice not subjected to I/R. This is attributed to post-operative ileus that is not significantly affected by knockout of nNOS. The results indicate that deleterious effects are greater in regions subjected to I/R in mice lacking nNOS compared with normal mice, implying that NO produced by nNOS has protective effects that outweigh any damaging effect of this free radical produced by enteric neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Dysfunction of the liver after transplantation may be related to the graft size and ischemia/reperfusion (I/R) injury. N-Acetylcysteine (NAC) exerts beneficial effects on livers undergoing ischemia reperfusion. We sought to evaluate NAC modulation on reduced livers associated with I/R injury. Methods. Male C57BL/6 mice of 8 weeks of age were divided into groups: 50% hepatectomy (G-Hep); NAC (G-Hep + NAC [150 mg/kg]) via vena cava 15 minutes before hepatectomy; ischemia (G-Hep + IR); NAC with hepatectomy (G-IR + Hep + Nac); and IR using 30 minutes selective hepatic occlusion and reperfusion for 24 hours. After 24 hours, the remaining liver was removed, for staining with hematoxylin and eosin or labeling by proliferating cell nuclear antigen. Blood was collected for biochemical evaluations. Significance was considered for P <= .05. Results. Aspartate aminotransferase was high in all studied groups reflecting the hepatectomy and intervention. injuries. However, when assessing alanine aminotransferase, which depicts liver function, induction of IR promoted a greater increase than hepatectomy (P = .0003). NAC decreased ALT activity in all groups, even in association with I/R (P < .05), reflecting a modulation of the injury. Necrosis resulting from IR was mitigated by NAC. The experimental model of 50% reduced live promoted regeneration of the hepatic remnant, which was accentuated by NAC, according to the total number of hepatocytes and PCNA values. Conclusion. NAC preserved the remnant liver in mice and stimulates regeneration even after IR injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ischemia/reperfusion (I/R) injury remains a major cause of graft dysfunction, which impacts short- and long-term follow-up. Hyperbaric oxygen therapy (HBO), through plasma oxygen transport, has been currently used as an alternative treatment for ischemic tissues. The aim of this study was to analyze the effects of HBO on kidney I/R injury model in rats, in reducing the harmful effect of I/R. The renal I/R model was obtained by occluding bilateral renal pedicles with nontraumatic vascular clamps for 45 minutes, followed by 48 hours of reperfusion. HBO therapy was delivered an hypebaric chamber (2.5 atmospheres absolute). Animals underwent two sessions of 60 minutes each at 6 hours and 20 hours after initiation of reperfusion. Male Wistar rats (n = 38) were randomized into four groups: sham, sham operated rats; Sham+HBO, sham operated rats exposed to HBO; I/R, animals submitted to I/R; and I/R+HBO, I/R rats exposed to HBO. Blood, urine, and kidney tissue were collected for biochemical, histologic, and immunohistochemical analyses. The histopathological evaluation of the ischemic injury used a grading scale of 0 to 4. HBO attenuated renal dysfunction after ischemia characterized by a significant decrease in blood urea nitrogen (BUN), serum creatinine, and proteinuria in the I/R+HBO group compared with I/R alone. In parallel, tubular function was improved resulting in significantly lower fractional excretions of sodium and potassium. Kidney sections from the I/R plus HBO group showed significantly lower acute kidney injury scores compared with the I/R group. HBO treatment significantly diminished proliferative activity in I/R (P < .05). There was no significant difference in macrophage infiltration or hemoxygenase-1 expression. In conclusion, HBO attenuated renal dysfunction in a kidney I/R injury model with a decrease in BUN, serum creatinine, proteinuria, and fractional excretion of sodium and potassium, associated with reduced histological damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steatotic livers show increased hepatic damage and impaired regeneration after partial hepatectomy (PH) under ischemia/reperfusion (I/R), which is commonly applied in clinical practice to reduce bleeding. The known function of retinol-binding protein 4 (RBP4) is to transport retinol in the circulation. We examined whether modulating RBP4 and/or retinol could protect steatotic and nonsteatotic livers in the setting of PH under I/R. Steatotic and nonsteatotic livers from Zucker rats were subjected to PH (70%) with 60 minutes of ischemia. RBP4 and retinol levels were measured and altered pharmacologically, and their effects on hepatic damage and regeneration were studied after reperfusion. Decreased RBP4 levels were observed in both liver types, whereas retinol levels were reduced only in steatotic livers. RBP4 administration exacerbated the negative consequences of liver surgery with respect to damage and liver regeneration in both liver types. RBP4 affected the mobilization of retinol from steatotic livers, and this revealed actions of RBP4 independent of simple retinol transport. The injurious effects of RBP4 were not due to changes in retinol levels. Treatment with retinol was effective only for steatotic livers. Indeed, retinol increased hepatic injury and impaired liver regeneration in nonsteatotic livers. In steatotic livers, retinol reduced damage and improved regeneration after surgery. These benefits of retinol were associated with a reduced accumulation of hepatocellular fat. Thus, strategies based on modulating RBP4 could be ineffective and possibly even harmful in both liver types in the setting of PH under I/R. In terms of clinical applications, a retinol pretreatment might open new avenues for liver surgery that specifically benefit the steatotic liver. Liver Transpl 18:1198-1208, 2012. (c) 2012 AASLD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Intestinal ischemia/reperfusion (IR) injury is a serious and triggering event in the development of remote organ dysfunction, from which the lung is the main target. This condition is characterized by intense neutrophil recruitment, increased microvascular permeability. Intestinal IR is also responsible for induction of adult respiratory distress syndrome, the most serious and life-threatening form of acute lung injury. The purpose of this study was to investigate the effect of annexin-A1 protein as an endogenous regulator of the organ remote injury induced by intestinal ischemia/reperfusion. Male C57bl/6 mice were subjected to intestinal ischemia, induced by 45 min occlusion of the superior mesenteric artery, followed by reperfusion. Results The intestinal ischemia/reperfusion evoked a high intensity lung inflammation as indicated by the number of neutrophils as compared to control group. Treatment with annexin-A1 peptidomimetic Ac2-26, reduced the number of neutrophils in the lung tissue and increased its number in the blood vessels, which suggests a regulatory effect of the peptide Ac2-26 in the neutrophil migration. Moreover, the peptide Ac2-26 treatment was associated with higher levels of plasma IL-10. Conclusion Our data suggest that the annexin-A1 peptidomimetic Ac2-26 treatment has a regulatory and protective effect in the intestinal ischemia/reperfusion by attenuation of the leukocyte migration to the lung and induction of the anti-inflammatory cytokine IL-10 release into the plasma. The anti-inflammatory action of annexin-A1 and its peptidomimetic described here may serve as a basis for future therapeutic approach in mitigating inflammatory processes due to intestinal ischemia/reperfusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Intestinal ischemia/reperfusion (IR) injury is a serious and triggering event in the development of remote organ dysfunction, from which the lung is the main target. This condition is characterized by intense neutrophil recruitment, increased microvascular permeability. Intestinal IR is also responsible for induction of adult respiratory distress syndrome, the most serious and life-threatening form of acute lung injury. The purpose of this study was to investigate the effect of annexin-A1 protein as an endogenous regulator of the organ remote injury induced by intestinal ischemia/reperfusion. Male C57bl/6 mice were subjected to intestinal ischemia, induced by 45 min occlusion of the superior mesenteric artery, followed by reperfusion. RESULTS: The intestinal ischemia/reperfusion evoked a high intensity lung inflammation as indicated by the number of neutrophils as compared to control group. Treatment with annexin-A1 peptidomimetic Ac2-26, reduced the number of neutrophils in the lung tissue and increased its number in the blood vessels, which suggests a regulatory effect of the peptide Ac2-26 in the neutrophil migration. Moreover, the peptide Ac2-26 treatment was associated with higher levels of plasma IL-10. CONCLUSION: Our data suggest that the annexin-A1 peptidomimetic Ac2-26 treatment has a regulatory and protective effect in the intestinal ischemia/reperfusion by attenuation of the leukocyte migration to the lung and induction of the anti-inflammatory cytokine IL-10 release into the plasma. The anti-inflammatory action of annexin-A1 and its peptidomimetic described here may serve as a basis for future therapeutic approach in mitigating inflammatory processes due to intestinal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural killer (NK) cells play crucial roles in innate immunity and express CD39 (Ecto-nucleoside triphosphate diphosphohydrolase 1 [E-NTPD1]), a rate-limiting ectonucleotidase in the phosphohydrolysis of extracellular nucleotides to adenosine. We have studied the effects of CD39 gene deletion on NK cells in dictating outcomes after partial hepatic ischemia/reperfusion injury (IRI). We show in mice that gene deletion of CD39 is associated with marked decreases in phosphohydrolysis of adenosine triphosphate (ATP) and adenosine diphosphate to adenosine monophosphate on NK cells, thereby modulating the type-2 purinergic (P2) receptors demonstrated on these cells. We note that CD39-null mice are protected from acute vascular injury after single-lobe warm IRI, and, relative to control wild-type mice, display significantly less elevation of aminotransferases with less pronounced histopathological changes associated with IRI. Selective adoptive transfers of immune cells into Rag2/common gamma null mice (deficient in T cells, B cells, and NK/NKT cells) suggest that it is CD39 deletion on NK cells that provides end-organ protection, which is comparable to that seen in the absence of interferon gamma. Indeed, NK effector mechanisms such as interferon gamma secretion are inhibited by P2 receptor activation in vitro. Specifically, ATPgammaS (a nonhydrolyzable ATP analog) inhibits secretion of interferon gamma by NK cells in response to interleukin-12 and interleukin-18, providing a mechanistic link between CD39 deletion and altered cytokine secretion. CONCLUSION: We propose that CD39 deficiency and changes in P2 receptor activation abrogate secretion of interferon gamma by NK cells in response to inflammatory mediators, thereby limiting tissue damage mediated by these innate immune cells during IRI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reperfusion of an organ following prolonged ischemia instigates the pro-inflammatory and pro-coagulant response of ischemia / reperfusion (IR) injury. IR injury is a wide-spread pathology, observed in many clinically relevant situations, including myocardial infarction, stroke, organ transplantation, sepsis and shock, and cardiovascular surgery on cardiopulmonary bypass. Activation of the classical, alternative, and lectin complement pathways and the generation of the anaphylatoxins C3a and C5a lead to recruitment of polymorphonuclear leukocytes, generation of radical oxygen species, up-regulation of adhesion molecules on the endothelium and platelets, and induction of cytokine release. Generalized or pathway-specific complement inhibition using protein-based drugs or low-molecular-weight inhibitors has been shown to significantly reduce tissue injury and improve outcome in numerous in-vitro, ex-vivo, and in-vivo models. Despite the obvious benefits in experimental research, only few complement inhibitors, including C1-esterase inhibitor, anti-C5 antibody, and soluble complement receptor 1, have made it into clinical trials of IR injury. The results are mixed, and the next objectives should be to combine knowledge and experience obtained in the past from animal models and channel future work to translate this into clinical trials in surgical and interventional reperfusion therapy as well as organ transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification of cellular pathways capable of limiting ischemia/reperfusion (I/R) injury remains a frontier in medicine, and its clinical relevance is urgent. Histidine triad nucleotide binding protein 1 (HINT1) is a tumor suppressor that influences apoptosis. Because apoptotic pathways are a feature of I/R injury, we asked whether Hint1 influences hepatic I/R injury. Hint1(-/-) and C57BL/6 mice were subjected to 70% liver ischemia followed by reperfusion for 3 or 24 hours or to a sham operation. The serum aminotransferase levels, histological lesions, apoptosis, reactive oxygen species, and expression of B cell lymphoma 2-associated X protein (Bax), heme oxygenase 1 (HO-1), interleukin-6 (IL-6), IL-10, tumor necrosis factor-a, Src, nuclear factor kappa B (p65/RelA), and c-Jun were quantified. The responses to toll-like receptor ligands and nicotinamide adenine dinucleotide phosphate oxidase activity in Kupffer cells were compared in Hint1(-/-) mice and C57BL/6 mice. After I/R, the levels of serum aminotransferases, parenchymal necrosis, and hepatocellular apoptosis were significantly lower in Hint1(-/-) mice versus control mice. Furthermore, Bax expression decreased more than 2-fold in Hint1(-/-) mice, and the increases in reactive oxygen species and HO-1 expression that were evident in wild-type mice after I/R were absent in Hint1(-/-) mice. The phosphorylation of Src and the nuclear translocation of p65 were increased in Hint1(-/-) mice, whereas the nuclear expression of phosphorylated c-Jun was decreased. The levels of the protective cytokines IL-6 and IL-10 were increased in Hint1(-/-) mice. These effects increased survival after I/R in mice lacking Hint1. Hint1(-/-) Kupffer cells were less activated than control cells after stimulation with lipopolysaccharides. CONCLUSION: The Hint1 protein influences the course of I/R injury, and its ablation in Kupffer cells may limit the extent of the injury.