956 resultados para calibrated fMRI
Resumo:
The simultaneous recording of scalp electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can provide unique insights into the dynamics of human brain function, and the increased functional sensitivity offered by ultra-high field fMRI opens exciting perspectives for the future of this multimodal approach. However, simultaneous recordings are susceptible to various types of artifacts, many of which scale with magnetic field strength and can seriously compromise both EEG and fMRI data quality in recordings above 3T. The aim of the present study was to implement and characterize an optimized setup for simultaneous EEG-fMRI in humans at 7T. The effects of EEG cable length and geometry for signal transmission between the cap and amplifiers were assessed in a phantom model, with specific attention to noise contributions from the MR scanner coldheads. Cable shortening (down to 12cm from cap to amplifiers) and bundling effectively reduced environment noise by up to 84% in average power and 91% in inter-channel power variability. Subject safety was assessed and confirmed via numerical simulations of RF power distribution and temperature measurements on a phantom model, building on the limited existing literature at ultra-high field. MRI data degradation effects due to the EEG system were characterized via B0 and B1(+) field mapping on a human volunteer, demonstrating important, although not prohibitive, B1 disruption effects. With the optimized setup, simultaneous EEG-fMRI acquisitions were performed on 5 healthy volunteers undergoing two visual paradigms: an eyes-open/eyes-closed task, and a visual evoked potential (VEP) paradigm using reversing-checkerboard stimulation. EEG data exhibited clear occipital alpha modulation and average VEPs, respectively, with concomitant BOLD signal changes. On a single-trial level, alpha power variations could be observed with relative confidence on all trials; VEP detection was more limited, although statistically significant responses could be detected in more than 50% of trials for every subject. Overall, we conclude that the proposed setup is well suited for simultaneous EEG-fMRI at 7T.
Resumo:
Dystonia is associated with impaired somatosensory ability. The electrophysiological method of repetitive transcranial magnetic stimulation (rTMS) can be used for noninvasive stimulation of the human cortex and can alter cortical excitability and associated behavior. Among others, rTMS can alter/improve somatosensory discrimation abilities, as shown in healthy controls. We applied 5Hz-rTMS over the left primary somatosensory cortex (S1) in 5 patients with right-sided writer's dystonia and 5 controls. We studied rTMS effects on tactile discrimination accuracy and concomitant rTMS-induced changes in hemodynamic activity measured by functional magnetic resonance imaging (fMRI). Before rTMS, patients performed worse on the discrimination task than controls even though fMRI showed greater task-related activation bilaterally in the basal ganglia (BG). In controls, rTMS led to improved discrimination; fMRI revealed this was associated with increased activity of the stimulated S1, bilateral premotor cortex and BG. In dystonia patients, rTMS had no effect on discrimination; fMRI showed similar cortical effects to controls except for no effects in BG. Improved discrimination after rTMS in controls is linked to enhanced activation of S1 and BG. Failure of rTMS to increase BG activation in dystonia may be associated with the lack of effect on sensory discrimination in this group and may reflect impaired processing in BG-S1 connections. Alternatively, the increased BG activation seen in the baseline state without rTMS may reflect a compensatory strategy that saturates a BG contribution to this task.
Resumo:
Introduction : Driving is a complex everyday task requiring mechanisms of perception, attention, learning, memory, decision making and action control, thus indicating that involves numerous and varied brain networks. If many data have been accumulated over time about the effects of alcohol consumption on driving capability, much less is known about the role of other psychoactive substances, such as cannabis (Chang et al.2007, Ramaekers et al, 2006). Indeed, the solicited brain areas during safe driving which could be affected by cannabis exposure have not yet been clearly identified. Our aim is to study these brain regions during a tracking task related to driving skills and to evaluate the modulation due to the tolerance of cannabis effects. Methods : Eight non-smoker control subjects participated to an fMRI experiment based on a visuo-motor tracking task, alternating active tracking blocks with passive tracking viewing and rest condition. Half of the active tracking conditions included randomly presented traffic lights as distractors. Subjects were asked to track with a joystick with their right hand and to press a button with their left index at each appearance of a distractor. Four smoking subjects participated to the same fMRI sessions once before and once after smoking cannabis and a placebo in two independent cross-over experiments. We quantified the performance of the subjects by measuring the precision of the behavioural responses (i.e. percentage of time of correct tracking and reaction times to distractors). Functional MRI data were acquired using on a 3.0T Siemens Trio system equipped with a 32-channel head coil. BOLD signals will be obtained with a gradient-echo EPI sequence (TR=2s, TE=30ms, FoV=216mm, FA=90°, matrix size 72×72, 32 slices, thickness 3mm). Preprocessing, single subject analysis and group statistics were conducted on SPM8b. Results were thresholded at p<0.05 (FWE corrected) and at k>30 for spatial extent. Results : Behavioural results showed a significant impairment in task and cognitive test performance of the subjects after cannabis inhalation when comparing their tracking accuracy either to the controls subjects or to their performances before the inhalation or after the placebo inhalation (p<0.001 corrected). In controls, fMRI BOLD analysis of the active tracking condition compared to the passive one revealed networks of polymodal areas in superior frontal and parietal cortex dealing with attention and visuo-spatial coordination. In accordance to what is known of the visual and sensory motor networks we found activations in V4, frontal eye-field, right middle frontal gyrus, intra-parietal sulcus, temporo-parietal junction, premotor and sensory-motor cortex. The presence of distractors added a significant activation in the precuneus. Preliminary results on cannabis smokers in the acute phase, compared either to themselves before the cannabis inhalation or to control subjects, showed a decreased activation in large portions of the frontal and parietal attention network during the simple tracking task, but greater involvement of precuneus, of the superior part of intraparietal sulcus and middle frontal gyrus bilaterally when distractors were present in the task. Conclusions : Our preliminary results suggest that acute cannabis smoking alters performances and brain activity during active tracking tasks, partly reorganizing the recruitment of brain areas of the attention network.
Resumo:
The tonotopic representations within the primary auditory cortex (PAC) have been successfully mapped with ultra-high field fMRI. Here, we compared the reliability of this tonotopic mapping paradigm at 7 T with 1.5 mm spatial resolution with maps acquired at 3 T with the same stimulation paradigm, but with spatial resolutions of 1.8 and 2.4 mm. For all subjects, the mirror-symmetric gradients within PAC were highly similar at 7 T and 3 T and across renderings at different spatial resolutions; albeit with lower percent signal changes at 3 T. In contrast, the frequency maps outside PAC tended to suffer from a reduced BOLD contrast-to-noise ratio at 3 T for a 1.8 mm voxel size, while robust at 2.4 mm and at 1.5 mm at 7 T. Overall, our results showed the robustness of the phase-encoding paradigm used here to map tonotopic representations across scanners.
Resumo:
Introduction: Neuroimaging of the self focused on high-level mechanisms such as language, memory or imagery of the self. Recent evidence suggests that low-level mechanisms of multisensory and sensorimotor integration may play a fundamental role in encoding self-location and the first-person perspective (Blanke and Metzinger, 2009). Neurological patients with out-of body experiences (OBE) suffer from abnormal self-location and the first-person perspective due to a damage in the temporo-parietal junction (Blanke et al., 2004). Although self-location and the first-person perspective can be studied experimentally (Lenggenhager et al., 2009), the neural underpinnings of self-location have yet to be investigated. To investigate the brain network involved in self-location and first-person perspective we used visuo-tactile multisensory conflict, magnetic resonance (MR)-compatible robotics, and fMRI in study 1, and lesion analysis in a sample of 9 patients with OBE due to focal brain damage in study 2. Methods: Twenty-two participants saw a video showing either a person's back or an empty room being stroked (visual stimuli) while the MR-compatible robotic device stroked their back (tactile stimulation). Direction and speed of the seen stroking could either correspond (synchronous) or not (asynchronous) to those of the seen stroking. Each run comprised the four conditions according to a 2x2 factorial design with Object (Body, No-Body) and Synchrony (Synchronous, Asynchronous) as main factors. Self-location was estimated using the mental ball dropping (MBD; Lenggenhager et al., 2009). After the fMRI session participants completed a 6-item adapted from the original questionnaire created by Botvinick and Cohen (1998) and based on questions and data obtained by Lenggenhager et al. (2007, 2009). They were also asked to complete a questionnaire to disclose the perspective they adopted during the illusion. Response times (RTs) for the MBD and fMRI data were analyzed with a 3-way mixed model ANOVA with the in-between factor Perspective (up, down) and the two with-in factors Object (body, no-body) and Stroking (synchronous, asynchronous). Quantitative lesion analysis was performed using MRIcron (Rorden et al., 2007). We compared the distributions of brain lesions confirmed by multimodality imaging (Knowlton, 2004) in patients with OBE with those showing complex visual hallucinations involving people or faces, but without any disturbance of self-location and first person perspective. Nine patients with OBE were investigated. The control group comprised 8 patients. Structural imaging data were available for normalization and co-registration in all the patients. Normalization of each patient's lesion into the common MNI (Montreal Neurological Institute) reference space permitted simple, voxel-wise, algebraic comparisons to be made. Results: Even if in the scanner all participants were lying on their back and were facing upwards, analysis of perspective showed that half of the participants had the impression to be looking down at the virtual human body below them, despite any cues about their body position (Down-group). The other participants had the impression to be looking up at the virtual body above them (Up-group). Analysis of Q3 ("How strong was the feeling that the body you saw was you?") indicated stronger self-identification with the virtual body during the synchronous stroking. RTs in the MBD task confirmed these subjective data (significant 3-way interaction between perspective, object and stroking). fMRI results showed eight cortical regions where the BOLD signal was significantly different during at least one of the conditions resulting from the combination of Object and Stroking, relative to baseline: right and left temporo-parietal junction, right EBA, left middle occipito-temporal gyrus, left postcentral gyrus, right medial parietal lobe, bilateral medial occipital lobe (Fig 1). The activation patterns in right and left temporo-parietal junction and right EBA reflected changes in self-location and perspective as revealed by statistical analysis that was performed on the percentage of BOLD change with respect to the baseline. Statistical lesion overlap comparison (using nonparametric voxel based lesion symptom mapping) with respect to the control group revealed the right temporo-parietal junction, centered at the angular gyrus (Talairach coordinates x = 54, y =-52, z = 26; p>0.05, FDR corrected). Conclusions: The present questionnaire and behavioural results show that - despite the noisy and constraining MR environment) our participants had predictable changes in self-location, self-identification, and first-person perspective when robotic tactile stroking was applied synchronously with the robotic visual stroking. fMRI data in healthy participants and lesion data in patients with abnormal self-location and first-person perspective jointly revealed that the temporo-parietal cortex especially in the right hemisphere encodes these conscious experiences. We argue that temporo-parietal activity reflects the experience of the conscious "I" as embodied and localized within bodily space.
Resumo:
Neuroimaging of the self has focused on high-level mechanisms such as language, memory or imagery of the self and implicated widely distributed brain networks. Yet recent evidence suggests that low-level mechanisms such as multisensory and sensorimotor integration may play a fundamental role in self-related processing. In the present study we used visuotactile multisensory conflict, robotics, virtual reality, and fMRI to study such low-level mechanisms by experimentally inducing changes in self-location. Participants saw a video of a person's back (body) or an empty room (no-body) being stroked while a MR-compatible robotic device stroked their back. The latter tactile input was synchronous or asynchronous with respect to the seen stroking. Self-location was estimated behaviorally confirming previous data that self-location only differed between the two body conditions. fMRI results showed a bilateral activation of the temporo-parietal cortex with a significantly higher BOLD signal increase in the synchronous/body condition with respect to the other conditions. Sensorimotor cortex and extrastriate-body-area were also activated. We argue that temporo-parietal activity reflects the experience of the conscious 'I' as embodied and localized within bodily space, compatible with clinical data in neurological patients with out-of-body experiences.
Resumo:
During the past 20 years, BOLD fMRI has developed towards a central and fundamental tool in neuroscience. It has been shown that the BOLD response provides an indicator of neuronal activity in the brain. Consequently, for an accurate interpretation of findings in BOLD MRI experiments and to draw meaningful conclusions about the temporal evolution of neural events, a deep understanding of the nature of the BOLD contrast has become of essential importance. Since the dynamics of the major direct determinants of the BOLD signal (CBF, CBV and CMRO(2)) range between seconds and minutes, long duration stimulation was an early key strategy needed to study and understand the BOLD characteristics. This paper summarizes and discusses the thoughts and rationales of the long duration stimulation studies.
Resumo:
Traditionally, the ventral occipito-temporal (vOT) area, but not the superior parietal lobules (SPLs), is thought as belonging to the neural system of visual word recognition. However, some dyslexic children who exhibit a visual attention span disorder - i.e. poor multi-element parallel processing - further show reduced SPLs activation when engaged in visual multi-element categorization tasks. We investigated whether these parietal regions further contribute to letter-identity processing within strings. Adult skilled readers and dyslexic participants with a visual attention span disorder were administered a letter-string comparison task under fMRI. Dyslexic adults were less accurate than skilled readers to detect letter identity substitutions within strings. In skilled readers, letter identity differs related to enhanced activation of the left vOT. However, specific neural responses were further found in the superior and inferior parietal regions, including the SPLs bilaterally. Two brain regions that are specifically related to substituted letter detection, the left SPL and the left vOT, were less activated in dyslexic participants. These findings suggest that the left SPL, like the left vOT, may contribute to letter string processing.
Resumo:
L’estudi de les funcions cerebrals humanes s’ha incrementat enormement durant els últims anys donada l’aparició de les imatges funcionals de ressonància magnètica (FMRI). Mentre que la tècnica s’ha emprat principalment en la localització de diferents funcions cerebrals, el problema de classificació d’estats cognitius ha estat poc explorat. L’estudi d’aquest problemaés important perquè pot servir com a eina per a detectar i seguir processoscognitius (seqüències d’estats cognitius) amb la finalitat de diagnosticarproblemes en el moment d’executar una tasca complexa.En aquest treball s’investiguen diferents aproximacions per a detectar l’estat cognitiu d’una persona prenent com a base la seva imatge de ressonància magnètica. En particular, s’han investigat varis mecanismes de sel·lecció de característiques així com mètodes d’aprenentatge automàtic pelproblema de la discriminació d’estats cognitius procedents d’estimuls auditius.Es presenten els resultats d’un estudi sobre estímuls musicals.
Resumo:
BACKGROUND: The amygdala, hippocampus, medial prefrontal cortex (mPFC) and brain-stem subregions are implicated in fear conditioning and extinction, and are brain regions known to be sexually dimorphic. We used functional magnetic resonance imaging (fMRI) to investigate sex differences in brain activity in these regions during fear conditioning and extinction. METHODS: Subjects were 12 healthy men comparable to 12 healthy women who underwent a 2-day experiment in a 3 T MR scanner. Fear conditioning and extinction learning occurred on day 1 and extinction recall occurred on day 2. The conditioned stimuli were visual cues and the unconditioned stimulus was a mild electric shock. Skin conductance responses (SCR) were recorded throughout the experiment as an index of the conditioned response. fMRI data (blood-oxygen-level-dependent [BOLD] signal changes) were analyzed using SPM8. RESULTS: Findings showed no significant sex differences in SCR during any experimental phases. However, during fear conditioning, there were significantly greater BOLD-signal changes in the right amygdala, right rostral anterior cingulate (rACC) and dorsal anterior cingulate cortex (dACC) in women compared with men. In contrast, men showed significantly greater signal changes in bilateral rACC during extinction recall. CONCLUSIONS: These results indicate sex differences in brain activation within the fear circuitry of healthy subjects despite similar peripheral autonomic responses. Furthermore, we found that regions where sex differences were previously reported in response to stress, also exhibited sex differences during fear conditioning and extinction.
Resumo:
This paper illustrates the philosophy which forms the basis of calibrationexercises in general equilibrium macroeconomic models and the details of theprocedure, the advantages and the disadvantages of the approach, with particularreference to the issue of testing ``false'' economic models. We provide anoverview of the most recent simulation--based approaches to the testing problemand compare them to standard econometric methods used to test the fit of non--lineardynamic general equilibrium models. We illustrate how simulation--based techniques can be used to formally evaluate the fit of a calibrated modelto the data and obtain ideas on how to improve the model design using a standardproblem in the international real business cycle literature, i.e. whether amodel with complete financial markets and no restrictions to capital mobility is able to reproduce the second order properties of aggregate savingand aggregate investment in an open economy.
Resumo:
Background: Language processing abnormalities and inhibition difficulties are hallmark features of schizophrenia. The objective of this study is to asses the blood oxygenation level-dependent (BOLD) response at two different stages of the illness and compare the frontal activity between adolescents and adults with schizophrenia. Methods: 10 adults with schizophrenia (mean age 31,5 years) and 6 psychotic adolescents with schizophrenic symptoms (mean age 16,2 years) underwent functional magnetic resonance imaging while performing two frontal tasks. Regional activation is compared in the bilateral frontal areas during a covert verbal fluency task (letter version) and a Stroop task (inhibition task). Results: Preliminary results show poorer task performance and less frontal cortex activation during both tasks in the adult group of patients with schizophrenia. In the adolescent patients group, fMRI analysis show significant and larger activity in the left frontal operculum (Broca's area) in the verbal fluency task and greater activity in the medium cingulate during the inhibition phase of the Stroop task. Conclusions: These preliminary findings suggest a decrease of frontal activity in the course of the illness. We assume that schizophrenia contributes to frontal brain activity reduction.
Resumo:
The geochemical compositions of biogenic carbonates are increasingly used for palaeoenvironmental reconstructions. The skeletal delta O-18 temperature relationship is dependent on water salinity, so many recent studies have focused on the Mg/Ca and Sr/Ca ratios because those ratios in water do not change significantly on short time scales. Thus, those elemental ratios are considered to be good palaeotemperature proxies in many biominerals, although their use remains ambiguous in bivalve shells. Here, we present the high-resolution Mg/Ca ratios of two modern species of juvenile and adult oyster shells, Crassostrea gigas and Ostrea edulis. These specimens were grown in controlled conditions for over one year in two different locations. In situ monthly Mn-marking of the shells has been used for day calibration. The daily Mg/Ca.ratios in the shell have been measured with an electron microprobe. The high frequency Mg/Ca variation of all specimens displays good synchronism with lunar cycles, suggesting that tides strongly influence the incorporation of Mg/Ca into the shells. Highly significant correlation coefficients (0.70<R<0.83, p<0.0001) between the Mg/Ca ratios and the seawater temperature are obtained only for juvenile C. gigas samples, while metabolic control of Mg/Ca incorporation and lower shell growth rates preclude the use of the Mg/Ca ratio in adult shells as a palaeothermometer. Data from three juvenile C. gigas shells from the two study sites are selected to establish a relationship: T = 3.77Mg/Ca + 1.88, where T is in degrees C and Mg/Ca in mmol/mol. (c) 2012 Elsevier B.V. All rights reserved.