992 resultados para caldera volcanism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

New geochronologic, geochemical, sedimentologic, and compositional data from the central Wrangell volcanic belt (WVB) document basin development and volcanism linked to subduction of overthickened oceanic crust to the northern Pacific plate margin. The Frederika Formation and overlying Wrangell Lavas comprise >3 km of sedimentary and volcanic strata exposed in the Wrangell Mountains of south-central Alaska (United States). Measured stratigraphic sections and lithofacies analyses document lithofacies associations that reflect deposition in alluvial-fluvial-lacustrine environments routinely influenced by volcanic eruptions. Expansion of intrabasinal volcanic centers prompted progradation of vent-proximal volcanic aprons across basinal environments. Coal deposits, lacustrine strata, and vertical juxtaposition of basinal to proximal lithofacies indicate active basin subsidence that is attributable to heat flow associated with intrabasinal volcanic centers and extension along intrabasinal normal faults. The orientation of intrabasinal normal faults is consistent with transtensional deformation along the Totschunda-Fairweather fault system. Paleocurrents, compositional provenance, and detrital geochronologic ages link sediment accumulation to erosion of active intrabasinal volcanoes and to a lesser extent Mesozoic igneous sources. Geochemical compositions of interbedded lavas are dominantly calc-alkaline, range from basaltic andesite to rhyolite in composition, and share geochemical characteristics with Pliocene-Quaternary phases of the western WVB linked to subduction-related magmatism. The U/Pb ages of tuffs and Ar-40/Ar-39 ages of lavas indicate that basin development and volcanism commenced by 12.5-11.0 Ma and persisted until at least ca. 5.3 Ma. Eastern sections yield older ages (12.5-9.3 Ma) than western sections (9.6-8.3 Ma). Samples from two western sections yield even younger ages of 5.3 Ma. Integration of new and published stratigraphic, geochronologic, and geochemical data from the entire WVB permits a comprehensive interpretation of basin development and volcanism within a regional tectonic context. We propose a model in which diachronous volcanism and transtensional basin development reflect progressive insertion of a thickened oceanic crustal slab of the Yakutat microplate into the arcuate continental margin of southern Alaska coeval with reported changes in plate motions. Oblique northwestward subduction of a thickened oceanic crustal slab during Oligocene to Middle Miocene time produced transtensional basins and volcanism along the eastern edge of the slab along the Duke River fault in Canada and subduction-related volcanism along the northern edge of the slab near the Yukon-Alaska border. Volcanism and basin development migrated progressively northwestward into eastern Alaska during Middle Miocene through Holocene time, concomitant with a northwestward shift in plate convergence direction and subduction collision of progressively thicker crust against the syntaxial plate margin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used differential GPS measurements from a 13 station GPS network spanning the Santa Ana Volcano and Coatepeque Caldera to characterize the inter-eruptive activity and tectonic movements near these two active and potentially hazardous features. Caldera-forming events occurred from 70-40 ka and at Santa Ana/Izalco volcanoes eruptive activity occurred as recently as 2005. Twelve differential stations were surveyed for 1 to 2 hours on a monthly basis from February through September 2009 and tied to a centrally located continuous GPS station, which serves as the reference site for this volcanic network. Repeatabilities of the averages from 20-minute sessions taken over 20 hours or longer range from 2-11 mm in the horizontal (north and east) components of the inter-station baselines, suggesting a lower detection limit for the horizontal components of any short-term tectonic or volcanic deformation. Repeatabilities of the vertical baseline component range from 12-34 mm. Analysis of the precipitable water vapor in the troposphere suggests that tropospheric decorrelation as a function of baseline lengths and variable site elevations are the most likely sources of vertical error. Differential motions of the 12 sites relative to the continuous reference site reveal inflation from February through July at several sites surrounding the caldera with vertical displacements that range from 61 mm to 139 mm followed by a lower magnitude deflation event on 1.8-7.4 km-long baselines. Uplift rates for the inflationary period reach 300 mm/yr with 1σ uncertainties of +/- 26 – 119 mm. Only one other station outside the caldera exhibits a similar deformation trend, suggesting a localized source. The results suggest that the use of differential GPS measurements from short duration occupations over short baselines can be a useful monitoring tool at sub-tropical volcanoes and calderas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subaquatic volcanic activity has been ongoing in Lake Kivu since the early Holocene and has a dynamic effect on the biological productivity in the surface water, and the preservation of carbonate in the deep anoxic water. Groundwater discharge into the lake’s deepwater propels the upward advection of the water column that ultimately supplies nutrients to the surface water for biological production. The amount of nutrients supplied from the deepwater can be increased suddenly by (1) a cold meteorological event that drives deep seasonal mixing resulting in increased nutrients from below and oxygen from above, or (2) subaquatic volcanic activity that induces a buoyant hydrothermal plume, which entrains nutrients from the deepwater and results in anoxia or suboxic conditions in the surface water. Previous sedimentological studies in Lake Kivu have hypothesized that regional climatic changes are responsible for sudden changes in the preservation of carbonates in the Main Basin. Here we reveal that sublacustrine volcanic events most likely induce the abrupt changes to the geochemistry in the sediment in Lake Kivu. An unprecedented look into the sediment stratigraphy and geochemistry from high-resolution seismic-reflection, and 15N-isotope analyses was conducted in the Main Basin. The results reveal that buoyant hydrothermal plumes caused by subaquatic volcanic activity are a possible trigger for increased biological productivity and organic matter preservation, and that ongoing hydrothermal activity increases the alkalinity in the deepwater, leading to carbonate preservation. The onset of carbonate preservation since the 1970s that is currently observed in the sediment could indicate that hydrothermal discharge has recently increased in the lake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The history of Lake Kivu is strongly linked to the activity of the Virunga volcanoes. Subaerial and subaquatic volcanoes, in addition to lake-level changes, shape the subaquatic morphologic and structural features in Lake Kivu's Main Basin. Previous studies revealed that volcanic eruptions blocked the former outlet of the lake to the north in the late Pleistocene, leading to a substantial rise in the lake level and subsequently the present- day thermohaline stratification. Additional studies have speculated that volcanic and seismic activities threaten to trigger a catastrophic release of the large amount of gases dissolved in the lake. The current study presents a bathymetric mapping and seismic profiling survey that covers the volcanically active area of the Main Basin at a resolution that is unprecedented for Lake Kivu. New geomorphologic features identified on the lake floor can accurately describe related lake-floor processes for the first time. The late Pleistocene lowstand is observed at 425 m depth, and volcanic cones, tuff rings, and lava flows observed above this level indicate both subaerial and subaquatic volcanic activities during the Holocene. The geomorphologic analysis yields new implications on the geologic processes that have shaped Lake Kivu's basin, and the presence of young volcanic features can be linked to the possibility of a lake overturn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Air mass trajectories in the Southern Hemisphere provide a mechanism for transport to and deposition of volcanic products on the Antarctic ice sheet from local volcanoes and from tropical and subtropical volcanic centers. This study extends the detailed record of Antarctic, South American, and equatorial volcanism over the last 12,000 years using continuous glaciochemical series developed from the Siple Dome A (SDMA) ice core, West Antarctica. The largest volcanic sulfate spike ( 280 mu g/L) occurs at 5881 B. C. E. Other large signals with unknown sources are observed around 325 B. C. E. ( 270 mu g/L) and 2818 B. C. E. ( 191 mu g/L). Ages of several large equatorial or Southern Hemisphere volcanic eruptions are synchronous with many sulfate peaks detected in the SDMA volcanic ice chemistry record. The microprobe "fingerprinting'' of glass shards in the SDMA core points to the following Antarctic volcanic centers as sources of tephra found in the SDMA core: Balenny Island, Pleiades, Mount Berlin, Mount Takahe, and Mount Melbourne as well as Mount Hudson and possibly Mount Burney volcanoes of South America. Identified volcanic sources provide an insight into the poorly resolved transport history of volcanic products from source volcanoes to the West Antarctic ice sheet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we use IP and alkenone biomarker proxies to document the subdecadal variations of sea ice and sea surface temperature in the subpolar North Atlantic induced by the decadally paced explosive tropical volcanic eruptions of the second half of the thirteenth century. The short- and long-term evolutions of both variables were investigated by cross analysis with a simulation of the IPSL-CM5A LR model. Our results show short-term ocean cooling and sea ice expansion in response to each volcanic eruption. They also highlight that the long response time of the ocean leads to cumulative surface cooling and subsurface heat buildup due to sea ice capping. As volcanic forcing relaxes, the surface ocean rapidly warms, likely amplified by subsurface heat, and remains almost ice free for several decades