996 resultados para calcium carbonate nanoparticle


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sand-silt-clay distribution was determined at Scripps on samples collected at the time the cores were split and described. The sediment classification used here is that of Shepard (1954); sand, silt, and clay boundaries are determined on the basis of the Wentworth (1922) scale. Thus the sand, silt, and clay fractions are composed of particles whose diameters range from 2000 to 62.5 µm, 62.5 to 3.91 µm, and less than 3.91 µm, respectively. This classification is applied regardless of sediment type and origin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sand-silt-clay distribution was determined on 10-cm**3 sediment samples collected at the time the cores were split and described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Past changes in sea-surface productivity in the Oyashio Current are evaluated on the basis of abundances of biological constituents in sediments from Leg 186 sites. Organic carbon contents at Sites 1150 and 1151 are moderate (0.5 to 1.5 wt%) and have an algal origin as indicated by low C/N ratios (<10) and by carbon isotopic compositions ranging from -23.4 to -21.3. A decreasing trend in organic carbon contents, carbon isotope ratios, and C/N ratios occurs with depth at both sites, probably as a consequence of diagenetic degradation of organic matter. Mass accumulation rates (MARs) determined for organic carbon and carbonates at Sites 1150 and 1151 show an abrupt increase between ~5 and 7 Ma. Similar results have been reported for sites in the Indian Ocean and the Pacific Ocean for the same time interval. As it has been previously suggested, the observed increase in MAR for both carbonate and organic carbon at Leg 186 sites probably resulted from augmented nutrient supply either from continental sources or from a more vigorous ocean circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyzed 580 integrated scrape-samples from HPC Site 480 for organic and carbonate carbon. Once precise dating is available, these will provide a high-resolution framework for understanding late Quaternary Oceanographic and climatic fluctuations in this region. Organic carbon ranges mostly within a narrow band of 1.8 to 3.5% C. Calcium carbonate varies from undetectable to over 20%, with an average of only about 5%. Source of carbonate are mostly benthic and planktonic foraminifers, although some sections are dominated by diagenetic carbonate, shelly hash, or nannofossils. Detrital sources are low in carbonate. We divided the sequence into 17 calcium carbonate (CC) zones to separate pulses, low and median values. The CC-Zones show various second-order patterns of cyclicity, asymmetry, and events. Laminated zones have lowest uniform values, but a perfect correlation between carbonate content and homogeneous or laminated facies was not found. Maximum values tend to be located near the transition of these two sediment types, showing that accumulation of carbonate is favored during times of breakdown of stable Oceanographic conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sand-silt-clay distribution was determined on 10-cm**3 sediment samples collected at the time the cores were split and described. The sediment classification used here is that of Shepard (1954), with the sand, silt, and clay boundaries based on the Wentworth (1922) scale. Thus the sand, silt, and clay fractions are composed of particles whose diameters are 2000 to 62.5 µm, 62.5 to 3.91 µm, and less than 3.91 µm, respectively. This classification is applied without regard to sediment type and origin; therefore, the sediment names used in this table may differ from those used elsewhere in this volume; e.g., a silt composed of nannofossils may be called a nannofossil ooze in a site chapter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual-domain diffuse reflectance data collected aboard the JOIDES Resolution with the Minolta spectrometer CM-2002 during Ocean Drilling Program Leg 172 have been used to estimate successfully the carbonate content of sediments. Calibration equations were developed for each site and for each lithostratigraphic unit (or subunit at Site 1063) using multiple linear regression on raw as well as pretreated reflectance spectra (i.e., first-order derivation and squaring of raw reflectance spectra) for a total of 4141 direct carbonate measurements. The root-mean-square errors of 4% to 7% are within the range of previous estimates using diffuse reflectance data and are acceptable for the general extensive range of carbonate contents (i.e., 0-70 wt%) that characterize sedimentation at Leg 172 sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Percent CaCO3 was determined in selected samples aboard the ship by the carbonate-bomb technique (Müller and Gastner, 1971). Results of these analyses are listed in Table 1 and plotted in Figures 1, 3, 4, and 5 as plus signs (+). Samples collected specifically for analyses of CaCO3 and organic carbon were analyzed at three shore-based laboratories. Concentrations of total carbon, organic carbon, and CaCO3 were determined in some samples at the DSDP sediment laboratory, using a Leco carbon analyzer, by personnel of the U.S. Geological Survey, under the supervision of T. L. Valuer. Most of these samples were collected from lithologic units containing relatively high concentrations of organic carbon. Sample procedures are outlined in Boyce and Bode (1972). Precision and accuracy are both ±0.3% absolute for total carbon, ±0.06% absolute for organic carbon, and ±3% absolute for CaCO3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Millennial-scale paleoceanographic changes in the Bering Sea during the last 71 kyrs were reconstructed using geochemical and isotope proxies (biogenic opal, CaCO3, and total organic carbon (TOC), nitrogen and carbon isotopes of sedimentary organic matters) and microfossil (radiolaria and foraminifera) data from two cores (PC23A and PC24A) which were collected from the northern continental slope area at intermediate water depths. Biogenic opal and TOC contents were generally high with high sedimentation rates during the last deglaciation. Laminated sediment depositions during the Early-Holocene (EH) and Bølling-Allerød (BA) were closely related with the increased primary productivity recorded by high biogenic opal and TOC contents and high d15N values. Enhanced surface-water productivity was attributed to increased nutrient supply from strengthened Bering Slope Current (BSC) and from increased amount of glacial melt-water, resulting in high C/N ratios and low d13C values, and high proportion of Rhizoplegma boreale during the last deglaciation. In contrast, low surface-water productivity during the last glacial period was due to depleted nutrient supply caused by strong stratification and to restricted phytoplankton bloom by extensive sea ice distribution under cold climates. Extensive formation of sea ice produces more oxygen-rich intermediate-water, leading to oxic bottom-water conditions due to active ventilation, which favored good preservation of oxic benthic foraminifera species. Remarkable CaCO3 peaks coeval with high biogenic opal and TOC contents in both cores during MIS 3 to MIS 4 are most likely correlated with Dansgaard-Oeschger (D-O) events. High d15N and d13Corg values during D-O interstadials support increased surface-water productivity resulting from nutrients supplied mainly by intensified BSC. During the EH, BA and D-O interstadials, dominant benthic foraminifera species indicate dysoxic bottom-water conditions as a result of increased surface-water productivity and weak ventilation of intermediate-water with mitigated sea ice development caused by strengthening of the Alaskan Stream. It is of note that the bottom-water conditions and formation of intermediate-water in the Bering Sea during the last glacial period are related to the variation of dissolved oxygen concentration of the bottom-water in the northeastern Pacific and to strong ventilation of intermediate-water in the northwestern Pacific. Thus, the millennial-scale paleoceanographic events in the Bering Sea during the D-O interstadials are closely associated with the intermediate-water ventilation, ultimately leading to weakening of North Pacific Intermediate Water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An intensive stable isotopic investigation was conducted on sediments recovered from the Great Australian Bight during Ocean Drilling Program Leg 182 at Sites 1127, 1129, and 1131. The sites comprise a transect from the shelf edge to upper slope through a thick sequence of predominately Quaternary cool-water carbonate sediments. Detailed mineralogic and stable isotopic (d18O and d13C) analyses of sediments from a total of 306 samples are presented from all three sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An intensive geochemical investigation was conducted on carbonate sediments recovered during Ocean Drilling Program Leg 182. Four trace elements in 635 sediment samples from Sites 1126-1132 on the Great Australian Bight were examined by atomic absorption spectrometry on the acid-soluble fraction. Downhole profiles of these elements exhibit complicated fluctuations throughout the late Eocene to Pleistocene, principally because of the variations in the acid-soluble fraction. The purpose of this study is to present initial results on the geochemical composition of Cenozoic cool-water carbonates as a basis for a future detailed investigation to determine the paleoenvironment of a carbonate-dominated continental margin during the evolution of the Southern Ocean.