961 resultados para cGMP-response element


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The presence of progesterone receptors (PR) in the human placenta has been demonstrated using the reverse transcriptase-polymerase chain reaction technique. It was observed that the amount of PR in the human placenta is less during late gestation. Electrophoretic mobility shift assays with nuclear extract isolated from the first trimester and term placenta revealed three complexes when incubated with [P-32]dCTP-labelled progesterone response element, and, in competition with unlabelled progesterone response element, the formation of all three complexes was inhibited. When supershift analysis of these complexes was carried out using antibodies which cross-react with both the A and B types of the PR or only with the B type receptor, only the A-form of PR was detected in the human placenta.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pathogenic rnycobacteria, including Mycobacterium tuberculosis and Mycobacterium bovis, cause significant morbidity and mortality worldwide. However, the vaccine strain Mycobacterium bovis BCG, unlike virulent strains, triggers extensive apoptosis of infected macrophages, a step necessary for the elicitation of robust protective immunity. We here demonstrate that M. bovis BCG triggers Toll-like receptor 2 (TLR2)-dependent microRNA-155 (miR-155) expression, which involves signaling cross talk among phosphatidylinositol 3-kinase (PI3K), protein kinase C delta (PKC delta), and mitogen-activated protein kinases (MAPKs) and recruitment of NF-kappa B and c-ETS to miR-155 promoter. Genetic and signaling perturbations presented the evidence that miR-155 regulates PKA signaling by directly targeting a negative regulator of PKA, protein kinase inhibitor alpha (PKI-alpha). Enhanced activation of PKA signaling resulted in the generation of PKA C-alpha; phosphorylation of MSK1, cyclic AMP response element binding protein (CREB), and histone H3; and recruitment of phospho-CREB to the apoptotic gene promoters. The miR-155-triggered activation of caspase-3, BAK1, and cytochrome c translocation involved signaling integration of MAPKs and epigenetic or posttranslational modification of histones or CREB. Importantly, M. bovis BCG infection-induced apoptosis was severely compromised in macrophages derived from miR-155 knockout mice. Gain-of-function and loss-of-function studies validated the requirement of miR-155 for M. bovis BCG's ability to trigger apoptosis. Overall, M. bovis BCG-driven miR-155 dictates cell fate decisions of infected macrophages, strongly implicating a novel role for miR-155 in orchestrating cellular reprogramming during immune responses to mycobacterial infection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transcription factor p53 is the most commonly altered gene in human cancer. As a redox-active protein in direct contact with DNA, p53 can directly sense oxidative stress through DNA-mediated charge transport. Electron hole transport occurs with a shallow distance dependence over long distances through the π-stacked DNA bases, leading to the oxidation and dissociation of DNA-bound p53. The extent of p53 dissociation depends upon the redox potential of the response element DNA in direct contact with each p53 monomer. The DNA sequence dependence of p53 oxidative dissociation was examined by electrophoretic mobility shift assays using radiolabeled oligonucleotides containing both synthetic and human p53 response elements with an appended anthraquinone photooxidant. Greater p53 dissociation is observed from DNA sequences containing low redox potential purine regions, particularly guanine triplets, within the p53 response element. Using denaturing polyacrylamide gel electrophoresis of irradiated anthraquinone-modified DNA, the DNA damage sites, which correspond to locations of preferred electron hole localization, were determined. The resulting DNA damage preferentially localizes to guanine doublets and triplets within the response element. Oxidative DNA damage is inhibited in the presence of p53, however, only at DNA sites within the response element, and therefore in direct contact with p53. From these data, predictions about the sensitivity of human p53-binding sites to oxidative stress, as well as possible biological implications, have been made. On the basis of our data, the guanine pattern within the purine region of each p53-binding site determines the response of p53 to DNA-mediated oxidation, yielding for some sequences the oxidative dissociation of p53 from a distance and thereby providing another potential role for DNA charge transport chemistry within the cell.

To determine whether the change in p53 response element occupancy observed in vitro also correlates in cellulo, chromatin immunoprecipition (ChIP) and quantitative PCR (qPCR) were used to directly quantify p53 binding to certain response elements in HCT116N cells. The HCT116N cells containing a wild type p53 were treated with the photooxidant [Rh(phi)2bpy]3+, Nutlin-3 to upregulate p53, and subsequently irradiated to induce oxidative genomic stress. To covalently tether p53 interacting with DNA, the cells were fixed with disuccinimidyl glutarate and formaldehyde. The nuclei of the harvested cells were isolated, sonicated, and immunoprecipitated using magnetic beads conjugated with a monoclonal p53 antibody. The purified immounoprecipiated DNA was then quantified via qPCR and genomic sequencing. Overall, the ChIP results were significantly varied over ten experimental trials, but one trend is observed overall: greater variation of p53 occupancy is observed in response elements from which oxidative dissociation would be expected, while significantly less change in p53 occupancy occurs for response elements from which oxidative dissociation would not be anticipated.

The chemical oxidation of transcription factor p53 via DNA CT was also investigated with respect to the protein at the amino acid level. Transcription factor p53 plays a critical role in the cellular response to stress stimuli, which may be modulated through the redox modulation of conserved cysteine residues within the DNA-binding domain. Residues within p53 that enable oxidative dissociation are herein investigated. Of the 8 mutants studied by electrophoretic mobility shift assay (EMSA), only the C275S mutation significantly decreased the protein affinity (KD) for the Gadd45 response element. EMSA assays of p53 oxidative dissociation promoted by photoexcitation of anthraquinone-tethered Gadd45 oligonucleotides were used to determine the influence of p53 mutations on oxidative dissociation; mutation to C275S severely attenuates oxidative dissociation while C277S substantially attenuates dissociation. Differential thiol labeling was used to determine the oxidation states of cysteine residues within p53 after DNA-mediated oxidation. Reduced cysteines were iodoacetamide labeled, while oxidized cysteines participating in disulfide bonds were 13C2D2-iodoacetamide labeled. Intensities of respective iodoacetamide-modified peptide fragments were analyzed using a QTRAP 6500 LC-MS/MS system, quantified with Skyline, and directly compared. A distinct shift in peptide labeling toward 13C2D2-iodoacetamide labeled cysteines is observed in oxidized samples as compared to the respective controls. All of the observable cysteine residues trend toward the heavy label under conditions of DNA CT, indicating the formation of multiple disulfide bonds potentially among the C124, C135, C141, C182, C275, and C277. Based on these data it is proposed that disulfide formation involving C275 is critical for inducing oxidative dissociation of p53 from DNA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pyrrole–Imidazole polyamides are programmable, cell-permeable small molecules that bind in the minor groove of double-stranded DNA sequence-specifically. Polyamide binding has been shown to alter the local helical structure of DNA, disrupt protein-DNA interactions, and modulate endogenous gene expression. Py–Im polyamides targeted to the androgen receptor-DNA interface have been observed to decrease expression of androgen-regulated genes, upregulate p53, and induce apoptosis in a hormone-sensitive prostate cancer cell line. Here we report that androgen response element (ARE)-targeted polyamides induced DNA replication stress in a hormone-insensitive prostate cancer cell line. The ATR checkpoint kinase was activated in response to this stress, causing phosphorylation of MCM2, and FANCD2 was monoubiquitinated. Surprisingly, little single-stranded DNA was exhibited, and the ATR targets RPA2 and Chk1 were not phosphorylated. We conclude that polyamide induces relatively low level replication stress, and suggest inhibition of the replicative helicase as a putative mechanism based on in vitro assays. We also demonstrate polyamide-induced inhibition of DNA replication in cell free extracts from X. laevis oocytes. In this system, inhibition of chromatin decondensation is observed, preventing DNA replication initiation. Finally, we show that Py-Im polyamides targeted to the ARE and ETS binding sequence downregulate AR- and ERG-driven signaling in a prostate cancer cell line harboring the TMPRSS2-ERG fusion. In a mouse xenograft model, ARE-targeted polyamide treatment reduced growth of the tumor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Hedgehog signaling pathway is essential for embryogenesis and for tissue homeostasis in the adult. However, it may induce malignancies in a number of tissues when constitutively activated, and it may also have a role in other forms of normal and maladaptive growth. Cyclopamine, a naturally occurring steroidal alkaloid, specifically inhibits the Hedgehog pathway by binding directly to Smoothened, an important Hedgehog response element. To use cyclopamine as a tool to explore and/or inhibit the Hedgehog pathway in vivo, a substantial quantity is required, and as a practical matter cyclopamine has been effectively unavailable for usage in animals larger than mice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The eleven-nineteen lysine-rich leukemia (ELL) gene undergoes translocation and fuses in-frame to the multiple lineage leukemia gene in a substantial proportion of patients suffering from acute forms of leukemia. Studies show that ELL indirectly modulates transcription by serving as a regulator for transcriptional elongation as well as for p53, U19/Eaf2, and steroid receptor activities. Our in vitro and in vivo data demonstrate that ELL could also serve as a transcriptional factor to directly induce transcription of the thrombospondin-1 (TSP-1) gene. Experiments using ELL deletion mutants established that full-length ELL is required for the TSP-1 up-regulation and that the trans-activation domain likely resides in the carboxyl terminus. Moreover, the DNA binding domain may localize to the first 45 amino acids of ELL. Not surprisingly, multiple lineage leukemia-ELL, which lacks these amino acids, did not induce expression from the TSP-1 promoter. In addition, the ELL core-response element appears to localize in the -1426 to -1418 region of the TSP-1 promoter. Finally, studies using zebrafish confirmed that ELL regulates TSP-1 mRNA expression in vivo, and ELL could inhibit zebrafish vasculogenesis, at least in part, through up-regulating TSP-1. Given the importance of TSP-1 as an anti-angiogenic protein, our findings may have important ramifications for better understanding cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three interferon regulatory factor (IRF) genes, CaIRF-1, CaIRF-2 and CaIRF-7, and their promoters of snakehead (Channa argus) were cloned and characterized. The CaIRF-1 gene consists of ten exons, spans 4.3 kb and encodes a putative peptide of 299 aa. The CaIRF-2 gene consists of nine exons, spans 8 kb and encodes a putative peptide of 328 aa. The gene organizations of CaIRF-1 and CaIRF-2 are very similar to that of human IRF-1 and IRF-2 except more compact. Comparison of exon-intron organization of the two genes indicated a common evolutionary structure, notably within the exons encoding the DNA binding domain (DBD) of the two factors. The CaIRF-7 gene spans 4.1 kb and encodes a putative peptide of 437 aa. However, the gene organization of CaIRF-7 consisting of ten exons is different to human IRF-7a gene which has an intron in 5' UTR. Three CaIRFs share homology in N-terminal encompassing the DBD that contains a characteristic repeat of tryptophan residues. The promoters of CaIRF-1 and CaIRF-2 genes contain the conserved sites for NF-kappa B and Sp1. The gamma-IFN activation sites (GAS) were found in the promoters of CaIRF-1 and CaIRF-7. The promoter of CaIRF-7 contains conserved interferon stimulating response element (ISRE) which is characteristic of IFN-induced gene promoter, and suggests that there also exist intracellular amplifier circuit in fish IFN signal pathway. Moreover, the element GAAANN oriented in both directions is repeated in CaIRF promoter regions, which confers to further inducibility by IFN. The constitutive expression of CaIRF genes were found to increase obviously in response to induction by the known IFN-inducer poly I:C. (c) 2008 Published by Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interferon (IFN) can induce an antiviral state via interferon-regulatory transcription factors (IRFs), which bind to and control genes directed by the interferon-stimulated response element (ISRE). Here we describe a fish IRF, termed CaIRF7, cloned from a subtractive cDNA library which is constructed with mRNAs obtained from crucian carp (Carassius auratus L.) blastulae embryonic (CAB) cells infected by UV-inactivated GCHV and mock-infected cells. CaIRF7 cDNA was found to be 1816 bp in length, with a 42 bp 5' UTR and a 508 bp 3' UTR. The open reading frame translates into 421 amino acids in which a DNA-binding domain (DBD) containing the repeated tryptophan motif and IRFs association domain have been identified. Like chicken GgIRF3, CaIRF7 was most similar to mammalian IRF7 with 27 to 30% identity overall and some 37% identity in their DBDs. A single transcript of 1.9 kb was detected in virally induced CAB cells by virtual Northern blotting. RT-PCR analysis revealed a wide tissue distribution of CaIRF7 constitutive expression, with detectable transcript in non-infected CAB cells and various tissues of healthy crucian carp. In addition, CaIRF7 expression was differentially increased by stimulation of the CAB cells with active GCHV, UV-inactivated GCHV or CAB IFN, indicating that the activation of CaIRF7 was directly regulated by IFN. (C) 2003 Published by Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

对Egonol龙胆三糖苷及以Egonol衍生物对雌二醇生成活性及其相关机制进行了研究。发现Egonol龙胆三糖苷促雌二醇最高生成率在MCF-7、HepG2、ROS1728中分别为157% 、182.4%、226.8%(以空白组200μg/ml睾酮转换成E2值作为100%生成率)。活性的强弱可能与芳香化酶的组织特异性表达情况一致,说明Egonol龙胆三糖苷促雌二醇活性可能与芳香化酶有关。芳香化酶的组织特异性表达与特异性启动子有关系,Egonol龙胆三糖苷在各组织中皆有促雌二醇活性,说明该化合物不是通过调节该酶的基因表达而起作用。 在探究Egonol龙胆三糖苷及其衍生物是否介导cAMP-PKA途径从而影响芳香化酶的表达中,发现该系列化合物在HEK-293T细胞中对cAMP的影响非常弱小。在人HepG2细胞中显示了极强的提高cAMP的作用。而化合物对cAMP的作用与其促雌二醇活性强弱不呈正相关关系,对c AMP-PKA途径的激活可能与胞内雌激素有关。 Egonol龙胆三糖苷及其衍生物对HepG2细胞增殖影响显示,该系列化合物同雌二醇一样有相似的较弱促HepG2细胞增殖作用。而且存在一定剂量依赖性。在瞬时转染有ERE(雌激素作用元件)的HepG2中,Egonol龙胆三糖苷及其衍生物也显示了类似于雌二醇与ERE结合的作用,进一步提示Egonol龙胆三糖苷及其衍生物在HepG2细胞中具备雌激素样作用。 为研究Egonol龙胆三糖苷及其衍生物是否可能直接提高芳香化酶的活性,我们计划将芳香化酶从芳香化酶阳性细胞中克隆后表达到芳香化酶阴性的细胞中。在MCF-7细胞中以Oligo dT为引物合成的cDNA模板,和在ROS1728细胞中以Oligo dT及大鼠引物F链为引物合成的cDNA模板能成功扩增出与芳香化酶全长编码序列大小一致的片段。 Egonol衍生物在HepG2、ROS1728细胞中促雌二醇活性的实验表明,Egonol苯环上引入其它基团可以提高Egonol的活性。 从雌激素经典的基因组效应和非基因组效应两方面对雌激素信号转导研究进展进行了简单的综述。 The promoting effects of egonol gentiotrioside and egonol derivatives on the synthesis of estrogen E2 were studied. In vitro test, egonol gentiotrioside promoted the synthesis of estrogen E2 in MCF-7, HepG2,ROS1728 cell lines with mean yields of estrogen E2 57%,82.4% and 126.8%, higher than those of blank control at a concentration of 100 mg/ml. The difference of estrogen E2 synthesis promoting effects among the cell lines suggested tissue specificity. It is in accordance with tissue specific character of aromatase expression. The evidence implied that effect of egonol gentiotrioside on promoting the synthesis of estrogen E2 was related to the aromatase. Different expression levels of aromatase in different tissues are attributed to their specific promoters, but egonol gentiotrioside can promote the synthesis of estrogen E2, in many tissues,so the fact is controversary to the estimation that this compound regulates the aromatase on gene level. In order to investigate whether egonol gentiotrioside and its synthetic derivatives regulates aromatase activity through the cAMP-PKA signal pathway,we transfected the p CRE-Luc luciferase reporter gene into the HEK-293T cells and HepG2 cells. These compounds had weak activity in promoting the cAMP activity in HEK-293T cells but strong in HepG2 cells.The compounds’effect of promoting the cAMP may be related to their estrogenic activity in cells. The modified HepG2 cell proliferation assay was used to evaluate the estrogenic activity of egonol gentiotrioside and its derivatives. The weak estrogenic activity of egonol gentiotrioside and its derivatives at various concentrations expressed as proliferative effect relative to that of blank control was examined. We transfected the pERE-Luc luciferase reporter gene into the HepG2 cells. These compounds possessed significant activity on estrogen response element compared with the one treated with 10 n M estrogen E2. This evidence indicated that the estrogenic activity of egonol gentiotrioside and its derivatives. In order to investigate whether the egonol gentiotrioside and its derivatives can upregulate the activity of aromatase directly, The full-length of P450 aromatase cDNA encoding aromatase were amplified by using primer Oligo dT in MCF-7,and specific primer in ROS1728,respectively. The structure-activity relationship of Egonol in promoting the synthesis of E2 in HepG2 and ROS1728 cells indicated that introduction of some group on the basic sketon of egonol could improve the effect. The progress in research of signal pathway of estrogen in recent years was summarized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

干扰素(IFNs)是最早发现的具有广泛用途的一类细胞因子,IFN-α通过JAK/STAT信号途径调控机体一系列生理和病理反应。至今尚未发现类干扰素的小分子。我们前期研究发现天然产物毛蕊异黄酮可激活干扰素诱导的JAK/STAT信号途径。为发现类干扰素小分子、获得小分子探针,本课题拟建立成熟的JAK/STAT信号途径的筛选模型,合成毛蕊异黄酮及其类似物,研究这些化合物的构效关系,进而尝试通过共价键标记生物素或香豆素来直接研究它们与相关受体的作用。 从异香草醛出发经7步合成反应得到了毛蕊异黄酮。采用平行合成策略得到异黄酮类化合物;采用分支式合成策略,以取代苯乙酸作为合成砌块,获得具有与异黄酮类似结构的香豆素、3-芳基喹诺酮。与分离得到的黄酮类化合物,构建了一个包括异黄酮、黄酮、香豆素、3-芳基喹诺酮在内的化合物库。 建立了包含IFN-α刺激反应元件 (ISRE)的荧光素酶报告基因体系,通过筛选化合物库中的化合物,发现异黄酮骨架为激活JAK/STAT信号途径必须结构、毛蕊异黄酮7-位酚羟基被取代后活性丧失。根据以上结果,对毛蕊异黄酮3′-位标记物的合成进行了初步尝试。 发现山茱萸科植物青荚叶(Helwingia japonica (Thunb.) Dietr.)有抑制蛋白酪氨酸磷酸酯酶1B(PTP1B)的活性。从其地上部分95%乙醇提取物的乙酸乙酯部分分离得到5个化合物,应用波谱方法及与已知品对照的手段鉴定它们为p-menth-2-en-1β, 4β, 8-triol (Z-1)、blumenol A (Z-2)、2′,3′,4′,5′,6′-五羟基查尔酮(Z-3)、洋芹素7-O-β-D-吡喃葡萄糖苷(Z-4)、木犀草素7-O-β-D-吡喃葡萄糖苷(Z-5). Interferons (IFNs) are one kind of cytokines with broad functions. IFN-α mediates series physiological and pathological changes of human body via JAK/STAT pathway. Untill now, no IFNs-like small molecules are discovered. In our preliminary experiment, the natural product calycosin has been observed to activate JAK/STAT pathway. Therefore, we establish a luciferase reporter gene system and synthesize calycosin and its analogues to reveal their structure-activity relationship (SAR). Besides, in order to prove that calycosin activates JAK/STAT pathway through IFN receptor, we attempted to tag it with biotin or coumarin by covalent bonding. Calycosin was synthesized from isovanillin via seven steps. Other isoflavones were obtained by parallel synthesis; coumarins and quinolones were prepared through divergent synthesis, using substituted phenylacetic acids as building blocks. Combing with natural flavones, a small molecule library was established. A luciferase reporter gene system, consisting of 5 copies of the ISRE (interferon-stimulated response element), was used for screening of small molecules from that library. We found that the core-structure of isoflavone was necessary, and if the 7-OH is substituted, the activity slumps. According to our observation, we tried to tag biotin or coumarin at 3′-OH of calycosin. The 95% ethanol extract of the aerial parts of Helwingia japonica (Thunb.) Dietr. showed protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. Five compounds were isolated. On the basis of spectral data or by comparison with authentic samples, they were identified as p-menth-2-en-1β,4β,8-triol (1), blumenol A (2), 2′,3′,4′,5′,6′-pentahydroxychalcone (3), apigenin 7-O-β-D-glucopyranoside (4), and luteolin 7-O-β-D-glucopyranoside (5).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The SREBP (sterol response element binding proteins) transcription factors are central to regulating de novo biosynthesis of cholesterol and fatty acids. The SREBPs are regulated by retention or escape from the ER to the Golgi where they are proteolytically cleaved into active forms. The SREBP cleavage activating protein (SCAP) and the INSIG proteins are essential in this regulatory process. The aim of this thesis is to further characterise the molecular and cellular aspects surrounding regulation of SREBP processing. SREBP and SCAP are known to interact via their carboxy-terminal regulatory domains (CTDs) but this interaction is poorly characterised. Significant steps were achieved in this thesis towards specific mapping of the interaction site. These included cloning and over expression and partial purification of tagged SREBP1 and SREBP2 CTDs and probing of a SCAP peptide array with the CTDs. Results from the SREBP2 probing were difficult to interpret due to insolubility issues with the protein, however, probing with SREBP1 revealed five potential binding sites which were detected reproducibly. Further research is necessary to overcome SREBP2 insolubility issues and to confirm the identified SREBP1 interaction site(s) on SCAP. INSIG1 has a central role in regulating SREBP processing and in regulating stability of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a rate limiting enzyme in cholesterol biosynthesis. There are two protein isoforms of human INSIG1 produced through the use of two in-frame alternative start sites. Bioinformatic analysis indicated that the presence of two in-frame start sites within the 5-prime region of INSIG1 mRNA is highly conserved and that production of two isoforms of INSIG1is likely a conserved event. Functional differences between these two isoforms were explored. No difference in either the regulation of SREBP processing or HMGCR degradation between the INSIG1 isoforms was observed and the functional significance of the two isoforms is as yet unclear. The final part of this thesis focused on enhancing the cytotoxicity of statins by targeted inhibition of SREBP processing by oxysterols. Statins have significant potential as anti-cancer agents as they inhibit the activity of HMGCR leading to a deficiency in mevalonate which is essential for cell survival. The levels of HMGCR fluctuate widely due to cholesterol feedback of SREBP processing. The relationship between sterol feedback and statin mediated cell death was investigated in depth in HeLa cells. Down regulation of SREBP processing by sterols significantly enhanced the efficacy of statin mediated cell death. Investigation of sterol feedback in additional cancer cell lines showed that sterol feedback was absent in cell lines A- 498, DU-145, MCF-7 and MeWo but was present in cell lines HT-29, HepG2 and KYSE-70. In the latter inhibition of SREBP processing using oxysterols significantly enhanced statin cytotoxicity. The results indicate that this approach is valid to enhance statin cytotoxicity in cancer cells, but may be limited by deregulation of SREBP processing and off target effects of statins, which were observed for some of the cancer cell lines screened.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nuclear respiratory factor-1 (NRF1) gene is activated by lipopolysaccharide (LPS), which might reflect TLR4-mediated mitigation of cellular inflammatory damage via initiation of mitochondrial biogenesis. To test this hypothesis, we examined NRF1 promoter regulation by NFκB, and identified interspecies-conserved κB-responsive promoter and intronic elements in the NRF1 locus. In mice, activation of Nrf1 and its downstream target, Tfam, by Escherichia coli was contingent on NFκB, and in LPS-treated hepatocytes, NFκB served as an NRF1 enhancer element in conjunction with NFκB promoter binding. Unexpectedly, optimal NRF1 promoter activity after LPS also required binding by the energy-state-dependent transcription factor CREB. EMSA and ChIP assays confirmed p65 and CREB binding to the NRF1 promoter and p65 binding to intron 1. Functionality for both transcription factors was validated by gene-knockdown studies. LPS regulation of NRF1 led to mtDNA-encoded gene expression and expansion of mtDNA copy number. In cells expressing plasmid constructs containing the NRF-1 promoter and GFP, LPS-dependent reporter activity was abolished by cis-acting κB-element mutations, and nuclear accumulation of NFκB and CREB demonstrated dependence on mitochondrial H(2)O(2). These findings indicate that TLR4-dependent NFκB and CREB activation co-regulate the NRF1 promoter with NFκB intronic enhancement and redox-regulated nuclear translocation, leading to downstream target-gene expression, and identify NRF-1 as an early-phase component of the host antibacterial defenses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dopamine (3-hydroxytyramine) is a well-known catecholamine neurotransmitter involved in multiple physiological functions including movement control. Here we report that the major extracellular metabolite of dopamine, 3-methoxytyramine (3-MT), can induce behavioral effects in a dopamine-independent manner and these effects are partially mediated by the trace amine associated receptor 1 (TAAR1). Unbiased in vivo screening of putative trace amine receptor ligands for potential effects on the movement control revealed that 3-MT infused in the brain is able to induce a complex set of abnormal involuntary movements in mice acutely depleted of dopamine. In normal mice, the central administration of 3-MT caused a temporary mild hyperactivity with a concomitant set of abnormal movements. Furthermore, 3-MT induced significant ERK and CREB phosphorylation in the mouse striatum, signaling events generally related to PKA-mediated cAMP accumulation. In mice lacking TAAR1, both behavioral and signaling effects of 3-MT were partially attenuated, consistent with the ability of 3-MT to activate TAAR1 receptors and cause cAMP accumulation as well as ERK and CREB phosphorylation in cellular assays. Thus, 3-MT is not just an inactive metabolite of DA, but a novel neuromodulator that in certain situations may be involved in movement control. Further characterization of the physiological functions mediated by 3-MT may advance understanding of the pathophysiology and pharmacology of brain disorders involving abnormal dopaminergic transmission, such as Parkinson's disease, dyskinesia and schizophrenia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A human endogenous retrovirus type E (HERV-E) was recently found to be selectively expressed in most renal cell carcinomas (RCCs). Importantly, antigens derived from this provirus are immunogenic, stimulating cytotoxic T cells that kill RCC cells in vitro and in vivo. Here, we show HERV-E expression is restricted to the clear cell subtype of RCC (ccRCC) characterized by an inactivation of the von Hippel-Lindau (VHL) tumor-suppressor gene with subsequent stabilization of hypoxia-inducible transcription factors (HIFs)-1α and -2α. HERV-E expression in ccRCC linearly correlated with HIF-2α levels and could be silenced in tumor cells by either transfection of normal VHL or small interfering RNA inhibition of HIF-2α. Using chromatin immunoprecipitation, we demonstrated that HIF-2α can serve as transcriptional factor for HERV-E by binding with HIF response element (HRE) localized in the proviral 5' long terminal repeat (LTR). Remarkably, the LTR was found to be hypomethylated only in HERV-E-expressing ccRCC while other tumors and normal tissues possessed a hypermethylated LTR preventing proviral expression. Taken altogether, these findings provide the first evidence that inactivation of a tumor suppressor gene can result in aberrant proviral expression in a human tumor and give insights needed for translational research aimed at boosting human immunity against antigenic components of this HERV-E.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of our study was to assess the importance of the CXC chemokine and interleukin (IL)-8 in promoting the transition of prostate cancer (CaP) to the androgen-independent state. Stimulation of the androgen-dependent cell lines, LNCaP and 22Rv1, with exogenous recombinant human interleukin-8 (rh-IL-8) increased androgen receptor (AR) gene expression at the messenger RNA (mRNA) and protein level, assessed by quantitative polymerase chain reaction and immunoblotting, respectively. Using an androgen response element-luciferase construct, we demonstrated that rh-IL-8 treatment also resulted in increased AR transcriptional activity in both these cell lines, and a subsequent upregulation of prostate-specific antigen and cyclin-dependent kinase 2 mRNA transcript levels in LNCaP cells. Blockade of CXC chemokine receptor-2 signaling using a small molecule antagonist (AZ10397767) attenuated the IL-8-induced increases in AR expression and transcriptional activity. Furthermore, in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, coadministration of AZ10397767 reduced the viability of LNCaP and 22Rv1 cells exposed to bicalutamide. Our data show that IL-8 signaling increases AR expression and promotes ligand-independent activation of this receptor in two androgen-dependent cell lines, describing two mechanisms by which this chemokine may assist in promoting the transition of CaP to the androgen-independent state. In addition, our data show that IL-8-promoted regulation of the AR attenuates the effectiveness of the AR antagonist bicalutamide in reducing CaP cell viability.