70 resultados para butene aromatization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Androgens may regulate the male skeleton directly through a stimulation of androgen receptors or indirectly through aromatization of androgens into estrogen and, thereafter, through stimulation of estrogen receptors (ERs). The relative importance of ER subtypes in the regulation of the male skeleton was studied in ERα-knockout (ERKO), ERβ-knockout (BERKO), and double ERα/β-knockout (DERKO) mice. ERKO and DERKO, but not BERKO, demonstrated decreased longitudinal as well as radial skeletal growth associated with decreased serum levels of insulin-like growth factor I. Therefore, ERα, but not ERβ, mediates important effects of estrogen in the skeleton of male mice during growth and maturation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eutypine (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzaldehyde) is a toxin produced by Eutypa lata, the causal agent of eutypa dieback in the grapevine (Vitis vinifera). Eutypine is enzymatically converted by numerous plant tissues into eutypinol (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzyl alcohol), a metabolite that is nontoxic to grapevine. We report a four-step procedure for the purification to apparent electrophoretic homogeneity of a eutypine-reducing enzyme (ERE) from etiolated mung bean (Vigna radiata) hypocotyls. The purified protein is a monomer of 36 kD, uses NADPH as a cofactor, and exhibits a Km value of 6.3 μm for eutypine and a high affinity for 3- and 4-nitro-benzaldehyde. The enzyme failed to catalyze the reverse reaction using eutypinol as a substrate. ERE detoxifies eutypine efficiently over a pH range from 6.2 to 7.5. These data strongly suggest that ERE is an aldehyde reductase that could probably be classified into the aldo-keto reductase superfamily. We discuss the possible role of this enzyme in eutypine detoxification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biogeochemical reef studies carried out in 1981 and 1984 found low concentration of total natural and anthropogenic hydrocarbons in inshore waters. Detection of lignin in marine and bottom sediments indicates that the land has major effect on makeup of organic matter there. Comparison of compositions of organic matter in sea water, suspended matter and bottom sediments indicated that it was altered rapidly by the reef community. Thus, in the inshore zone of the island, runoff from the land is important in supplying nutrients to the reef ecosystem alongside with transport of nutrients by deep waters. Concentrations of nutri¬ents (N, P) in the inshore zone are higher than in waters of the tropical part of the ocean. Nitrogen is the limiting element in development of phytoplankton in the inshore zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A relatively well documented record of intermediate and late chlorophyll diagenesis in marine sediments now exists. Intermediate diagenetic stages include conversion of chlorins to DPEP-series porphyrins and subsequent chelation with nickel, vanadyl, and, in special cases, copper. Increasing thermal stress leads to etio-series generation and transalkylation (Baker, 1969; Baker and Smith, 1975; Baker et al., 1977; Palmer and Baker, in press). In contrast, the early transformations of clorophyll are still largely unknown. Very early diagenetic reactions must certainly include loss of magnesium, deesterification, decarboxylation, reduction of ring-conjugating groups, and finally, oxidative-aromatization of carbons 7 and 8 in ring IV to yield free-base porphyrins (Baker and Smith, 1973; Smith and Baker, 1974). Chlorins (7,8-dihydroporphyrins) are very difficult to isolate and identify, because of hydrocarbon impurities which absorb in the blue to violet region of the electromagnetic spectrum and which co-chromatograph with the pigments. Further complications possibly can arise from artifact formation during isolation. In the present study, twelve DSDP Leg 56 core samples, ranging in sub-bottom depth from 4 to 420 meters and in age from Pleistocene to middle Miocene, were analyzed for tetrapyrrole pigments. Chlorins, in concentrations ranging from about 4 to less than 0.002 µg/g sediment, wet weight, were the only tetrapyrroles found. A carotenoid (tetraterpene) was isolated from Section 434-1-3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyanhydrides are useful biodegradable vehicles for controlled drug delivery. In aqueous media the breaking of the anhydride bonds resulting in gradually polymer fragments collapse and release drugs in a controlled manner. In this study, two new biodegradable polyanhydrides copolymers were synthesised using a melt-polycondensation method. The first is poly (bis (p-carboxyphenoxy)-2-butene-co-sebacic acid) (CP2B: SA), which has double bonds along the polymer backbone. The second is crosslinked poly (glutamic acid-sebacic acid-co-sebacic acid) (GluSA: SA), where the conjugated unit of glutamic acid with sebacic acid (glutamic acid-SA) acted as a crosslinking fragment in producing the crosslinking polymer. The two polymers were applied to preparation of microspheres with bovine serum albumin (BSA) as a model protein, using both double emulsion solvent evaporation and spray drying methods. The characterisation of the microspheres, morphology, particle size, and drug loading, was studied. The in vitro hydrolytic degradation of polymers and blank microspheres was monitored using IR, GPC, and DSC. In vitro drug release behaviour was also studied. Though the studies showed cleavages of anhydride bonds occurred rapidly (<5 days), bulks of the polymer microspheres could be observed after a few weeks to a month; and only around 10-35% of the protein was detectable in a four-week period in vitro. We found the pH of the medium exerts a large impact on the release of the protein from the microspheres. The higher the pH, the faster the release. Therefore the release of the protein from the polyanhydride microspheres was pH-sensitive due mainly to the dissolution of monomers from the microspheres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The selective oxidation of crotyl alcohol has been explored over a Pd(111) model catalyst. At low temperatures, the alcohol adsorbs intact with the C=C bond parallel to the surface. Activation likely proceeds through an allyl alkoxide intermediate that follows two distinct reaction channels. Over the clean surface, ∼90% of the alcohol oxidizes to surface bound crotonaldehyde above 200 K, which subsequently all decarbonylates to propene and CO at room temperature. The minor reaction channel involves C-O scission to 2-butene and water. While some of these undesired reactively formed alkene products desorb around 300 K, the majority dehydrogenate to irreversibly bound carbon above 380 K. This latter decomposition pathway is unlikely to be important at the low temperatures utilized in liquid-phase crotyl alcohol oxidation over supported palladium catalysts. Adsorbed CO persists until 430 K and is likely responsible for site-blocking and deactivation of dispersed metallic Pd clusters. Coadsorbed oxygen suppresses crotonaldehyde decarbonylation and promotes its release from the surface. © 2007 American Chemical Society.