50 resultados para bromination
Resumo:
The problems associated with x-ray-transparent denture base are defined and conventional approaches to their solution are assessed. Consideration of elemental absorption parameters leads to the postulation that atoms such as zinc, and bromine, may be effective radiopacifiers over at least part of the clinical x-ray spectrum. These elements had hitherto been considered too light to be effective. Investigation of copolymers of methylmethacrylate and p-bromostyrene revealed no deleterious effects arising from the aromatically brominated monomer (aliphatic bromination caused UV destabilisation). For effective x-ray absorption a higher level of bromination would be necessary, but the expense of suitable compounds made further study unjustifiable. Incorporation of zinc atoms into the polymer was accomplished by copolymerisation of zinc acrylate with methylmethacrylate in solution. At high zinc levels this produced a powder copolymer convenient for addition to dental polymers in the dough moulding process. The resulting mouldings showed increasing brittleness at high loadings of copolymer. Fracture was shown to be through the powder particles rather than around them, indicating the source of weakness to be in the internal structure of the copolymer. The copolymer was expected to be cross-linked through divalent zinc ions and its insolubility and infusibility supported this. Cleavage of the ionic cross links with formic acid produced a zinc-free linear copolymer of high molecular weight. Addition of low concentrations of acrylic acid to the dough moulding monomer appeared to 'labilise' the cross links producing a more homogeneous moulding with adequate wet strength. Toxicologically the zinc-containing materials are satisfactory and though zinc is extracted at a measurable rate in an aqueous system, this is very small and should be acceptable over the life of a denture. In other respects the composite is quite satisfactory and though a marketable product is not claimed the system is considered worthy of further study.
Resumo:
Cyclothialidine, a natural product isolated from Streptomyces .filipinensis NR0484, has been proven to be a potent and selective inhibitor of the bacterial enzyme DNA gyrase. Gyrase inhibition results in cell death, the enzyme being the target of several currently used antibiotics. Cyclothialidine showed poor activity against whole bacterial cells, highlighting scope for improvement regarding cell membrane pemeability in order for the full potential of this new class of antibiotics to be realised, Structurally, cyclothialidine contains a 12-membered lactone ring which is partly integrated into a pentapeptide chain, with a substituted aromatic moiety bordering the lactone, Retrosynthetically it can be traced back to cis-3-hydroxyproline, 3,5-dihydroxy-2,6-dimethylbenzoic acid and four commercially available amino acids; two serine, one cysteine and one alanine. In this work, a model of cyclothialidine was synthesised in order to establish the methodology for more complex compounds. Analogues with hydroxy, dihydroxy and dihydroxymethyl substituted aromatic moieties were then prepared to ensure successful protection methods could be performed and the pharmacophore synthesised. The key aromatic moiety, 2,6-dimethyl-3,5-dihydroxybenzoic acid was produced via two successive Mannich reaction/reduction steps. Acid protection using 4-nitrobenzyl bromide and TBDMS hydroxyl protection followed by bromination of one methyl afforded the desired intermediate. Reaction with a serine/cysteine dipeptide, followed by deprotection and cyclisation under Mitsunobu conditions lead to the 12-membered lactone. An amine substituted aromatic analogue and also replacement of the cysteine sulphur by oxygen were attempted but without success. In an effort to improve cell permeability, a conjugate was synthesised between the pharmacophore and a cholesterol moiety. It was hoped the steroid fragment would serve to increase potency by escorting the molecule through the lipid environment of the cell membrane. The pharmacophore and conjugate were tested against a variety of bacterial strains but the conjugate failed to improve activity.
Resumo:
The enzyme S-adenosyl-L-homocysteine (AdoHcy) hydrolase effects hydrolytic cleavage of AdoHcy to adenosine (Ado) and L-homocysteine (Hcy). The cellular levels of AdoHcy and Hcy are critical because AdoHcy is a potent feedback inhibitor of crucial transmethylation enzymes. Also, elevated plasma levels of Hcy in humans have been shown to be a risk factor in coronary artery disease. ^ On the basis of the previous finding that AdoHcy hydrolase is able to add the enzyme-sequestered water molecule across the 5',6'-double bond of (halo or dihalohomovinyl)-adenosines causing covalent binding inhibition, we designed and synthesized AdoHcy analogues with the 5',6'-olefin motif incorporated in place of the carbon-5' and sulfur atoms. From the available synthetic methods we chose two independent approaches: the first approach was based on the construction of a new C5'-C6' double bond via metathesis reactions, and the second approach was based on the formation of a new C6'-C7' single bond via Pd-catalyzed cross-couplings. Cross-metathesis of the suitably protected 5'-deoxy-5'-methyleneadenosine with racemic 2-amino-5-hexenoate in the presence of Hoveyda-Grubb's catalyst followed by standard deprotection afforded the desired analogue as 5' E isomer of the inseparable mixture of 9'R/S diastereomers. Metathesis of chiral homoallylglycine [(2S)-amino-5-hexenoate] produced AdoHcy analogue with established stereochemistry E at C5'atom and S at C9' atom. The 5'-bromovinyl analogue was synthesized using the bromination-dehydrobromination strategy with pyridinium tribromide and DBU. ^ Since literature reports on the Pd-catalyzed monoalkylation of dihaloalkenes (Csp2-Csp3 coupling) were scarce, we were prompted to undertake model studies on Pd-catalyzed coupling between vinyl dihalides and alkyl organometallics. The 1-fluoro-1-haloalkenes were found to undergo Negishi couplings with alkylzinc bromides to give multisubstituted fluoroalkenes. The alkylation was trans-selective affording pure Z-fluoroalkenes. The highest yields were obtained with PdCl 2(dppb) catalyst, but the best stereochemical outcome was obtained with less reactive Pd(PPh3)4. Couplings of 1,1-dichloro-and 1,1-dibromoalkenes with organozinc reagents resulted in the formation of monocoupled 1-halovinyl product. ^
Resumo:
The work described in this thesis revolves around the 1,1,n,ntetramethyl[n](2,11)teropyrenophanes, which are a series of [n]cyclophanes with a severely bent, board-shaped polynuclear aromatic hydrocarbons (PAH). The thesis is divided into seven Chapters. The first Chapter conatins an overview of the seminal work on [n]cyclophanes of the first two members of the “capped rylene” series of PAHs: benzene and pyrene. Three different general strategies for the synthesis of [n]cyclophanes are discussed and this leads in to a discussion of some slected syntheses of [n]paracyclopahnes and [n](2,7)pyrenophanes. The chemical, structural, spectroscopic and photophysical properties of these benzene and pyrene-derived cyclophanes are discussed with emphasis on the changes that occur with changes in the structure of the aromatic system. Chapter 1 concludes with a brief introduction to [n]cyclophanes of the fourth member of the capped rylene series of PAHs: teropyrene. The focus of the work described in Chapter 2 is the synthesis of of 1,1,n,ntetramethyl[n](2,11)teropyrenophane (n = 6 and 7) using a double-McMurry strategy. While the synthesis 1,1,7,7-tetramethyl[7](2,11)teropyrenophane was successful, the synthesis of the lower homologue 1,1,6,6-tetramethyl[6](2,11)teropyrenophane was not. The conformational behaviour of [n.2]pyrenophanes was also studied by 1H NMR spectroscopy and this provided a conformation-based rationale for the failure of the synthesis of 1,1,6,6-tetramethyl[6](2,11)teropyrenophane. Chapter 3 contains details of the synthesis of 1,1,n,n-tetramethyl[n](2,11)teropyrenophanes (n = 7-9) using a Wurtz / McMurry strategy, which proved to be more general than the double McMurry strategy. The three teropyrenophanes were obtained in ca. 10 milligram quantities. Trends in the spectroscopic properties that accompany changes in the structure of the teropyrene system are discussed. A violation of Kasha’s rule was observed when the teropyrenophanes were irradiated at 260 nm. The work described in the fourth Chapter concentrates on the development of gram-scale syntheses of 1,1,n,n-tetramethyl[n](2,11)teropyrenophanes (n = 7–10) using the Wurtz / McMurry strategy. Several major modifications to the orginal synthetic pathway had to be made to enable the first several steps to be performed comfortably on tens of grams of material. Solubility problems severely limited the amount of material that could be produced at a late stage of the synthetic pathways leading to the evennumbered members of the series (n = 8, 10). Ultimately, only 1,1,9,9- tetramethyl[9](2,11)teropyrenophane was synthesized on a multi-gram scale. In the final step in the synthesis, a valence isomerization / dehydrogenation (VID) reaction, the teropyrenophane was observed to become unstable under the conditions of its formation at n = 8. The synthesis of 1,1,10,10-tetramethyl[10](2,11)teropyrenophane was achieved for the first time, but only on a few hundred milligram scale. In Chapter 5, the results of an investigation of the electrophilic aromatic bromination of the 1,1,n,n-tetramethyl[n](2,11)teropyrenophanes (n = 7–10) are presented. Being the most abundant cyclophane, most of the work was performed on 1,1,9,9-tetramethyl[9](2,11)teropyrenophane. Reaction of this compound with varying amounts of of bromine revealed that bromination occurs most rapidly at the symmetryrelated 4, 9, 13 and 18 positions (teropyrene numbering) and that the 4,9,13,18- tetrabromide could be formed exclusively. Subsequent bromination occurs selectively on the symmetry-related 6, 7, 15 and 16 positions (teropyrene numbering), but considerably more slowly. Only mixtures of penta-, hexa-, hepta and octabromides could be formed. Bromination reactions of the higher and lower homologues (n = 7, 8 and 10) revealed that the reactivity of the teropyrene system increased with the degree of bend. Crystal structures of some tetra-, hexa-, hepta- and octa-brominated products were obtained. The goal of the work described in Chapter 6 is to use 1,1,9,9- tetramethyl[9](2,11)teropyrenophane as a starting material for the synthesis of warped nanographenophanes. A bromination, Suzuki-Miyaura, cyclodehydrogenation sequence was unsuccessful, as was a C–H arylation / cyclodehydrogenation approach. Itami’s recently-developed K-region-selective annulative -extension (APEX) reaction proved to be successful, affording a giant [n]cyclophane with a C84 PAH. Attempted bay-region Diels-Alder reactions and some cursory host-guest chemistry of teropyrenophanes are also discussed. In Chapter 7 a synthetic approach toward a planar model compound, 2,11-di-tbutylteropyrene, is described. The synthesis could not be completed owing to solubility problems at the end of the synthetic pathway.
Resumo:
DOB (4‐bromo‐2,5‐dimethoxyamphetamine) is a newly emerging hallucinogenic amphetamine that sparked serious health warnings in Ireland, following its first seizure back in 2003. Known more commonly as “snowball”, this drug is highly potent and may be used as a substitute to ecstasy (MDMA) and lysergic acid diethylamide (LSD). To date, the work carried out on the impurity profiling of DOB is limited in comparison to amphetamine, methamphetamine and MDMA. In this work, the impurity profile of 4‐bromo‐2,5‐dimethoxyphenyl‐2‐propanone (4‐Br‐2,5‐P2P) is explored. This ketone is a direct precursor to DOB. Its more versatile non‐bromo analogue, 2,5‐ dimethoxyphenyl‐2‐propanone (2,5‐P2P) is also examined, as in addition to DOB, it may be used in the synthesis of a range of several other hallucinogenic amphetamines. A number of different routes to both 2,5‐P2P and 4‐Br‐2,5‐P2P were investigated. For each of these routes, the impurities produced were carefully isolated. Following isolation, the impurities were fully characterised (by 1H‐NMR/13C‐NMR spectroscopy, IR, MS), in order to aid structure elucidation. Compounds not easily resolved by flash column chromatography were analysed by LC‐MS and/or independently synthesised for the purpose of attaining reference standards. Adaptation of the well‐known ‘phenylacetic acid route’ to synthesis of both 2,5‐P2P and 4‐Br‐2,5‐P2P, was found to provide low yields of the expected ketone products. Four impurities were isolated during the preparation of both ketones. The yield of one of these impurities (possessing a dibenzylketone core), was greatly influenced by the amount of acetic anhydride reagent used during the reaction. Having carried out the reaction with several different equivalents of acetic anhydride, it was found that formation of the ‘dibenzylketone’ could not be eliminated. This may increase its likelihood of being detected in the final drug product. The ‘Darzens route’, having very recently emerged as a synthetic route to amphetamine and MDMA precursors, was discovered to be a viable route for manufacture of 2,5‐P2P and 4‐Br‐2,5‐P2P. Despite execution of the reaction being more tedious, the route provides superior yields (≈50–60%) to those achieved using the ‘phenylacetic acid route’ (≈35–38%). Incorporation of a bromine atom (at the aromatic 4‐position) is required at some stage during synthesis of DOB. The bromination of many intermediates/starting materials was therefore also examined in detail. Bromination of the acid starting material 2,5‐dimethoxyphenylacetic acid (2,5‐PAA) was found to be clean and high yielding. This was in stark contrast to the bromination of the benzaldehyde starting material, the ketone precursor 2,5‐P2P and the dibenzylketone‐based impurity. Numerous brominated products were isolated from each of these reactions, many of which were novel compounds, and previously unreported as impurities in the literature. The unpredictable/nondescript nature of these brominations is likely to have a significant impact on the impurity profile of illicitly produced DOB.