998 resultados para bradykinin B2 receptor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le GABA est le principal neurotransmetteur inhibiteur du SNC et est impliqué dans le développement du cerveau, la plasticité synaptique et la pathogénèse de maladies telles que l’épilepsie, les troubles de l’anxiété et la douleur chronique. Le modèle actuel de fonctionnement du récepteur GABA-B implique l’hétérodimérisation GABA-B1/B2, laquelle est requise au ciblage à la surface membranaire et au couplage des effecteurs. Il y est cependant des régions du cerveau, des types cellulaires et des périodes du développement cérébral où la sous-unité GABA-B1 est exprimée en plus grande quantité que GABA-B2, ce qui suggère qu’elle puisse être fonctionnelle seule ou en association avec des partenaires inconnus, à la surface cellulaire ou sur la membrane réticulaire. Dans le cadre de cette thèse, nous montrons la capacité des récepteurs GABA-B1 endogènes à activer la voie MAPK-ERK1/2 dans la lignée dérivée de la glie DI-TNC1, qui n’exprime pas GABA-B2. Les mécanismes qui sous-tendent ce couplage demeurent mal définis mais dépendent de Gi/o et PKC. L’immunohistochimie de récepteurs endogènes montre par ailleurs que des anticorps GABA-B1 dirigés contre la partie N-terminale reconnaissent des protéines localisées au RE tandis des anticorps C-terminaux (CT) marquent une protéine intranucléaire. Ces données suggèrent que le domaine CT de GABA-B1 pourrait être relâché par protéolyse. L’intensité des fragments potentiels est affectée par le traitement agoniste tant en immunohistochimie qu’en immunobuvardage de type western. Nous avons ensuite examiné la régulation du clivage par le protéasome en traitant les cellules avec l’inhibiteur epoxomicine pendant 12 h. Cela a résulté en l’augmentation du marquage intranucléaire de GABA-B1-CT et d’un interacteur connu, le facteur de transcription pro-survie ATF-4. Dans des cellules surexprimant GABA-B1-CT, l’induction et la translocation nucléaire d’ATF-4, qui suit le traitement epoxomicine, a complètement été abolie. Cette observation est associée à une forte diminution du décompte cellulaire. Étant donné que les trois derniers résidus de GABA-B1-CT (LYK) codent un ligand pseudo-PDZ et que les protéines à domaines PDZ sont impliquées dans la régulation du ciblage nucléaire et de la stabilité de protéines, en complément de leur rôle d’échaffaud à la surface cellulaire, nous avons muté les trois derniers résidus de GABA-B1-CT en alanines. Cette mutation a complètement annulé les effets de GABA-B1-CT sur l’induction d’ATF-4 et le décompte cellulaire. Cette deuxième série d’expériences suggère l’existence possible de fragments GABA-B1 intranucléaires régulés par le traitement agoniste et le protéasome dans les cellules DI-TNC1. Cette régulation d’ATF-4 dépend des résidus LYK de GABA-B1-CT, qui modulent la stabilité de GABA-B1-CT et favorisent peut-être la formation d’un complexe multiprotéique incluant GABA-B1-CT, ATF-4, de même qu’une protéine d’échaffaudage inconnue. En somme, nous démontrons que les sous-unités GABA-B1 localisées au RE, lorsque non-hétérodimérisées avec GABA-B2, demeurent capables de moduler les voies de signalisation de la prolifération, la différentiation et de la survie cellulaire, via le couplage de protéines G et possiblement la protéolyse régulée. Les mécanismes de signalisation proposés pourraient servir de nouvelle plate-forme dans la compréhension des actions retardées résultant de l’activation des récepteurs 7-TMs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although cell surface metalloendopeptidases degrade neuropeptides in the extracellular fluid to terminate signaling, the function of peptidases in endosomes is unclear. We report that isoforms of endothelin-converting enzyme-1 (ECE-1a-d) are present in early endosomes, where they degrade neuropeptides and regulate post-endocytic sorting of receptors. Calcitonin gene-related peptide (CGRP) co-internalizes with calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), beta-arrestin2, and ECE-1 to early endosomes, where ECE-1 degrades CGRP. CGRP degradation promotes CLR/RAMP1 recycling and beta-arrestin2 redistribution to the cytosol. ECE-1 inhibition or knockdown traps CLR/RAMP1 and beta-arrestin2 in endosomes and inhibits CLR/RAMP1 recycling and resensitization, whereas ECE-1 overexpression has the opposite effect. ECE-1 does not regulate either the resensitization of receptors for peptides that are not ECE-1 substrates (e.g., angiotensin II), or the recycling of the bradykinin B(2) receptor, which transiently interacts with beta-arrestins. We propose a mechanism by which endosomal ECE-1 degrades neuropeptides in endosomes to disrupt the peptide/receptor/beta-arrestin complex, freeing internalized receptors from beta-arrestins and promoting recycling and resensitization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physiological activator of protein kinase C (PKC), diacylglycerol, is formed by hydrolysis of phosphoinositides (PI) by phospholipase C (PLC) or phosphatidylcholine by phospholipase D (PLD). We have measured activation of these phospholipases by endothelin-1 (ET-1), bradykinin (BK), or phenylephrine (PE) in ventricular myocytes cultured from neonatal rat. The stimulation of PI hydrolysis after 10 min by 0.1 microM ET-1 (about 12-fold) was much greater than for BK or PE (each about four-fold), and did not correlate with translocation of nPKC delta or nPKC epsilon (Clerk A. Bogoyevitch MA. Andersson MB. Sugden PH, 1994. J Biol Chem 269: 32848-32857: Clerk A, Gillespie-Brown J, Fuller SJ, Sugden PH, 1996. Biochem J 317: 109-118). However, ET-1 and BK stimulated a similar rapid increase in [3H]InsP, formation (< 30 s), which was much greater than that seen with PE. This early phase correlated with PKC translocation. Acute or chronic exposure to 12-O-tetradecanoylphorbol-13-acetate (TPA) or treatment with Ro-31-8220 showed that the stimulation of PI hydrolysis by PE, but not ET-1 or BK, was inhibited by activation of PKC. Furthermore, ET-1 and BK heterologously desensitized the stimulation of PI hydrolysis by PE, ET-1 or BK homologously uncoupled their own receptors from [3H]InsP3 formation, but there was no evidence of heterologous desensitization with these two agonists. Anomalously, chronic exposure to TPA increased the stimulation of PI hydrolysis by BK, but this probably resulted from an increase in BK receptor density. PLD was also rapidly activated by TPA. ET-1, BK or PE. Experiments with Ro-31-8220 showed that the stimulation of PLD by ET-1 and BK was mediated through activation of PKC. We discuss the characteristics of the activation of PI hydrolysis and PLD by ET-1, BK, and PE with respect to the translocation of PKC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The small G protein Ras has been implicated in hypertrophy of cardiac myocytes. We therefore examined the activation (GTP loading) of Ras by the following hypertrophic agonists: phorbol 12-myristate 13-acetate (PMA), endothelin-1 (ET-1), and phenylephrine (PE). All three increased Ras.GTP loading by 10-15-fold (maximal in 1-2 min), as did bradykinin. Other G protein-coupled receptor agonists (e.g. angiotensin II, carbachol, isoproterenol) were less effective. Activation of Ras by PMA, ET-1, or PE was reduced by inhibition of protein kinase C (PKC), and that induced by ET-1 or PE was partly sensitive to pertussis toxin. 8-(4-Chlorophenylthio)-cAMP (CPT-cAMP) did not inhibit Ras.GTP loading by PMA, ET-1, or PE. The association of Ras with c-Raf protein was increased by PMA, ET-1, or PE, and this was inhibited by CPT-cAMP. However, only PMA and ET-1 increased Ras-associated mitogen-activated protein kinase kinase 1-activating activity, and this was decreased by PKC inhibition, pertussis toxin, and CPT-cAMP. PMA caused the rapid appearance of phosphorylated (activated) extracellular signal-regulated kinase in the nucleus, which was inhibited by a microinjected neutralizing anti-Ras antibody. We conclude that PKC- and Gi-dependent mechanisms mediate the activation of Ras in myocytes and that Ras activation is required for stimulation of extracellular signal-regulated kinase by PMA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bradykinin-potentiating peptides (BPPs) or proline-rich oligopeptides (PROs) isolated from the venom glands of Bothrops jararaca (Bj) were the first natural inhibitors of the angiotensin-converting enzyme (ACE) described. Bj-PRO-5a (< EKWAP), a member of this structurally related peptide family, was essential for the development of captopril, the first site-directed ACE inhibitor used for the treatment of human hypertension. Nowadays, more Bj-PROs have been identified with higher ACE inhibition potency compared to Bj-PRO-5a. However, despite its modest inhibitory effect of ACE inhibition, Bj-PRO-5a reveals strong bradykinin-potentiating activity, suggesting the participation of other mechanisms for this peptide. In the present study, we have shown that Bj-PRO-5a induced nitric oxide (NO) production depended on muscarinic acetylcholine receptor M1 subtype (mAchR-M1) and bradykinin B(2) receptor activation, as measured by a chemiluminescence assay using a NO analyzer. Intravital microscopy based on transillumination of mice cremaster muscle also showed that both bradykinin B(2) receptor and mAchR-M1 contributed to the vasodilatation induced by Bj-PRO-5a. Moreover, Bj-PRO-5a-mediated vasodilatation was completely blocked in the presence of a NO synthase inhibitor. The importance of this work lies in the definition of novel targets for Bj-PRO-5a in addition to ACE, the structural model for captopril development. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proline-rich peptides from Bothrops jararaca venom (Bj-PRO) were characterized based on the capability to inhibit the somatic angiotensin-converting enzyme. The pharmacological action of these peptides resulted in the development of Captopril, one of the best examples of a target-driven drug discovery for treatment of hypertension. However, biochemical and biological properties of Bj-PROs were not completely elucidated yet, and many recent studies have suggested that their activity relies on angiotensin-converting enzyme-independent mechanisms. Here, we show that Bj-PRO-7a (receptors were also responsive to Bj-PRO-7a application, whereas no such response was observed in undifferentiated P19 cells not expressing muscarinic receptors. As further support for its specific action on M1 receptors, the peptide did not activate M3 subtypes in transfected CHO cells. Our findings provide a novel M1 muscarinic receptor agonist that could be used for basic research and even for pharmacological applications. (C) 2010 International Society for Advancement of Cytometry

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Angiotensin II (Ang II) and its transmembrane AT(1) receptor were selected in order to test an innovative strategy that might allow the assessment of the agonist binding site in the receptor molecule. With the use of the 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) paramagnetic probe, a biologically active agonist (TOAC(1)-Ang II), as well as an inactive control (TOAC(4)-Ang II) analogs were mixed in solution with various synthesized AT(1) fragments. Comparative intermolecular interactions, as estimated by analyzing the EPR spectra of solutions, suggested the existence of an agonist binding site containing a sequence composed of portions of the N-terminal (13-17) and the third extracellular loop (266-278) fragments of the AT(1) molecule. Therefore, this combined EPR-TOAC approach shows promise as an alternative for use also in other applications related to specific intermolecular association processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first naturally occurring angiotensin-converting enzyme (ACE) inhibitors described are pyroglutamyl proline-rich oligopeptides, found in the venom of the viper Bothrops jararaca, and named as bradykinin-potentiating peptides (BPPs). Biochemical and pharmacological properties of these peptides were essential for the development of Captopril, the first active site-directed inhibitor of ACE, currently used for the treatment of human hypertension. However, a number of data have suggested that the pharmacological activity of BPPs could not only be explained by their inhibitory action on enzymatic activity of somatic ACE. In fact, we showed recently that the strong and long-lasting anti-hypertensive effect of BPP-10c [receptors expressed in blood vessels have been related to blood pressure regulation. Therefore, we have studied the effects of BPP-10c on acetylcholine receptor function in the PC12 pheochromocytoma cell line, which following induction to neuronal differentiation expresses most of the nicotinic receptor subtypes. BPP-10c did not induce receptor-mediated ion flux, nor potentiated carbamoylcholine-provoked receptor activity as determined by whole-cell recording. This peptide, however, alleviated MK-801-induced inhibition of nicotinic acetylcholine receptor activity. Although more data are needed for understanding the mechanism of the BPP-10c effect on nicotinic receptor activity and its relationship with the anti-hypertensive activity, this work reveals possible therapeutic applications for BPP-10c in establishing normal acetylcholine receptor activity. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incubation of heat-denatured plasma from the rattlesnake Crotalus atrox with trypsin generated a bradykinin (BK) that contained two amino acid substitutions (Arg(1) --> Val and Ser(6) --> Thr) compared with mammalian BK. Bolus intra-arterial injections of synthetic rattlesnake BK (0.01-10 nmol/kg) into the anesthetized rattlesnake, Crotalus durissus terrificus, produced a pronounced and concentration-dependent increase in systemic vascular conductance (Gsys). This caused a fall in systemic arterial blood pressure (Psys) and an increase in blood flow. Heart rate and stroke volume also increased. This primary response was followed by a significant rise in Psys and pronounced tachycardia (secondary response). Pretreatment with N-G-nitro-L-arginine methyl ester reduced the NK-induced systemic vasodilatation, indicating that the effect is mediated through increased NO synthesis. The tachycardia associated with the late primary and secondary response to BK was abolished with propranolol and the systemic vasodilatation produced in the primary phase was also significantly attenuated by pretreatment, indicating that the responses are caused, at least in part, by release of cathecholamines and subsequent stimulation of beta-adrenergic receptors. In contrast, the pulmonary circulation was relatively unresponsive to BK.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

N-Terminally and internally labeled analogues of the hormones angiotensin (AII, DRVYIHPF) and bradykinin (BK, RPPGFSPFR) were synthesized containing the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4- carboxylic acid (TOAC). TOAC replaced Asp 1 (TOAC 1-AII) and Val 3 (TOAC 3-AII) in AII and was inserted prior to Arg 1 (TOAC 0-BK) and replacing Pro 3 (TOAC 3-BK) in BK. The peptide conformational properties were examined as a function of trifluoroethanol (TFE) content and pH. Electron paramagnetic resonance spectra were sensitive to both variables and showed that internally labeled analogues yielded rotational correlation times (TC) considerably larger than N-terminally labeled ones, evincing the greater freedom of motion of the N-terminus. In TFE, τ C increased due to viscosity effects. Calculation of τ Cpeptide/τ CTOAC ratios indicated that the peptides acquired more folded conformations. Circular dichroism spectra showed that, except for TOAC 1-AII in TFE, the N-terminally labeled analogues displayed a conformational behavior similar to that of the parent peptides. In contrast, under all conditions, the TOAC 3 derivatives acquired more restricted conformations. Fluorescence spectra of All and its derivatives were especially sensitive to the ionization of Tyr 4. Fluorescence quenching by the nitroxide moiety was much more pronounced for TOAC 3-AII The conformational behavior of the TOAC derivatives bears excellent correlation with their biological activity, since, while the N-terminally labeled peptides were partially active, their internally labeled counterparts were inactive [Nakaie, C. R., et al., Peptides 2002, 23, 65-70]. The data demonstrate that insertion of TOAC in the middle of the peptide chain induces conformational restrictions that lead to loss of backbone flexibility, not allowing the peptides to acquire their receptor-bound conformation. © 2004 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Kinins participate in the pathophysiology of obesity and type 2 diabetes by mechanisms which are not fully understood. Kinin B-1 receptor knockout mice (B-1(-/-)) are leaner and exhibit improved insulin sensitivity. Methodology/Principal Findings: Here we show that kinin B-1 receptors in adipocytes play a role in controlling whole body insulin action and glucose homeostasis. Adipocytes isolated from mouse white adipose tissue (WAT) constitutively express kinin B-1 receptors. In these cells, treatment with the B-1 receptor agonist des-Arg(9)-bradykinin improved insulin signaling, GLUT4 translocation, and glucose uptake. Adipocytes from B-1(-/-) mice showed reduced GLUT4 expression and impaired glucose uptake at both basal and insulin-stimulated states. To investigate the consequences of these phenomena to whole body metabolism, we generated mice where the expression of the kinin B-1 receptor was limited to cells of the adipose tissue (aP2-B-1/B-1(-/-)). Similarly to B-1(-/-) mice, aP2-B-1/B-1(-/-) mice were leaner than wild type controls. However, exclusive expression of the kinin B1 receptor in adipose tissue completely rescued the improved systemic insulin sensitivity phenotype of B-1(-/-) mice. Adipose tissue gene expression analysis also revealed that genes involved in insulin signaling were significantly affected by the presence of the kinin B-1 receptor in adipose tissue. In agreement, GLUT4 expression and glucose uptake were increased in fat tissue of aP2-B-1/B-1(-/-) when compared to B-1(-/-) mice. When subjected to high fat diet, aP2-B-1/B-1(-/-) mice gained more weight than B-1(-/-) littermates, becoming as obese as the wild types. Conclusions/Significance: Thus, kinin B-1 receptor participates in the modulation of insulin action in adipocytes, contributing to systemic insulin sensitivity and predisposition to obesity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endothelial dysfunction has been implicated in portal vein obstruction, a condition responsible for major complications in chronic portal hypertension. Increased vascular tone due to disruption of endothelial function has been associated with an imbalance in the equilibrium between endothelium-derived relaxing and contracting factors. Herein, we assessed underlying mechanisms by which expression of bradykinin B-1 receptor (B1R) is induced in the endothelium and how its stimulation triggers vasoconstriction in the rat portal vein. Prolonged in vitro incubation of portal vein resulted in time- and endothelium-dependent expression of B1R and cyclooxygenase-2 (COX-2). Inhibition of protein kinase C (PKC) or phosphatidylinositol 3-kinase (PI3K) significantly reduced expression of B1R through the regulation of transcription factors, activator protein-1 (AP-1) and cAMP response element-binding protein (CREB). Moreover, pharmacological studies showed that B1R-mediated portal vein contraction was reduced by COX-2, but not COX-1, inhibitors. Notably, activation of endothelial B1R increased phospholipase A(2)/COX-2-derived thromboxane A(2) (TXA(2)) levels, which in turn mediated portal vein contraction through binding to TXA(2) receptors expressed in vascular smooth muscle cells. These results provide novel molecular mechanisms involved in the regulation of B1R expression and identify a critical role for the endothelial B1R in the modulation of portal vein vascular tone. Our study suggests a potential role for B1R antagonists as therapeutic tools for diseases where portal hypertension may be involved. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Baclofen, a GABA(B) agonist, reduces ethanol intake in animals and humans, but the contrary or no effect was also reported. Our previous study demonstrated that mice characterized as "loss of control over ethanol intake" had different Gabbr1 and Gabbr2 transcription levels, which express, respectively, the GABA(B1) and GABA(B2) subunits in brain areas related to addictive behavior. In the present study, we tested baclofen on ethanol intake in mice exposed to the free-choice paradigm. Adult male Swiss mice, individually housed, had free access to three bottles: ethanol (5% and 10%) and water. The protocol had four phases: acquisition (AC, 10 weeks), withdrawal (W, 4 cycles during 2 weeks of 2 day-free-choice and 2 day-only-water), reexposure (RE, 2 weeks), and adulteration of ethanol solutions with quinine (AD, 2 weeks). Mice characterized as "loss of control" (A, n = 11, preference for ethanol in AC and maintenance of ethanol intake levels in AD), heavy (H, n = 11, preference for ethanol in AC and reduction of ethanol intake levels in AD), and light (L n = 16, preference for water in all phases) drinkers were randomly distributed into two subgroups receiving either intraperitoneal injections of all doses of baclofen (1.25, 2.5, and 5.0 mg/kg, given each dose twice in consecutive days) or saline, being exposed to free-choice. Fluid consumption was measured 24 h later. Baclofen reduced ethanol intake in group L In group H a reduction compared to AC was observed. Group A maintained their high ethanol intake even after baclofen treatment. Activation of the GABA(B) receptor depends on the precise balance between the GABA(B1) and GABA(B2) subunits, so the disproportionate transcription levels, we reported in group A, could explain this lack of response to baclofen. These data highlight the importance to test baclofen in individuals with different ethanol drinking profiles, including humans. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Eph receptor tyrosine kinases mediate juxtacrine signals by interacting “in trans” with ligands anchored to the surface of neighboring cells via a GPI-anchor (ephrin-As) or a transmembrane segment (ephrin-Bs), which leads to receptor clustering and increased kinase activity. Additionally, soluble forms of the ephrin-A ligands released from the cell surface by matrix metalloproteases can also activate EphA receptor signaling. Besides these trans interactions, recent studies have revealed that Eph receptors and ephrins coexpressed in neurons can also engage in lateral “cis” associations that attenuate receptor activation by ephrins in trans with critical functional consequences. Despite the importance of the Eph/ephrin system in tumorigenesis, Eph receptor-ephrin cis interactions have not been previously investigated in cancer cells. Here we show that in cancer cells, coexpressed ephrin-A3 can inhibit the ability of EphA2 and EphA3 to bind ephrins in trans and become activated, while ephrin-B2 can inhibit not only EphB4 but also EphA3. The cis-inhibition of EphA3 by ephrin-B2 implies that in some cases ephrins that cannot activate a particular Eph receptor in trans can nevertheless inhibit its signaling ability through cis association. We also found that an EphA3 mutation identified in lung cancer enhances cis interaction with ephrin-A3. These results suggest a novel mechanism that may contribute to cancer pathogenesis by attenuating the tumor suppressing effects of Eph receptor signaling pathways activated by ephrins in trans (Falivelli et al. 2013).