973 resultados para bound quivers
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
The promastigote surface protease (PSP) of Leishmania is a neutral membrane-bound zinc enzyme. The protease has no exopeptidase activity and does not cleave a large selection of substrates with chromogenic and fluorogenic leaving groups at the P1' site. The substrate specificity of the enzyme was studied by using natural and synthetic peptides of known amino acid sequence. The identification of 11 cleavage sites indicates that the enzyme preferentially cleaves peptides at the amino side when hydrophobic residues are in the P1' site and basic amino acid residues in the P2' and P3' sites. In addition, tyrosine residues are commonly found at the P1 site. Hydrolysis is not, however, restricted to these residues. These results have allowed the synthesis of a model peptide, H2N-L-I-A-Y-L-K-K-A-T-COOH, which is cleaved by PSP between the tyrosine and leucine residues with a kcat/Km ratio of 1.8 X 10(6) M-1 s-1. Furthermore, a synthetic nonapeptide overlapping the last four amino acids of the prosequence and the first five residues of mature PSP was found to be cleaved by the protease at the expected site to release the mature enzyme. This result suggests a possible autocatalytic mechanism for the activation of the protease. Finally, the hydroxamate-derivatized dipeptide Cbz-Tyr-Leu-NHOH was shown to inhibit PSP competitively with a KI of 17 microM.
Resumo:
Rapid neurotransmitter release depends on the ability to arrest the SNAP receptor (SNARE)-dependent exocytosis pathway at an intermediate "cocked" state, from which fusion can be triggered by Ca(2+). It is not clear whether this state includes assembly of synaptobrevin (the vesicle membrane SNARE) to the syntaxin-SNAP-25 (target membrane SNAREs) acceptor complex or whether the reaction is arrested upstream of that step. In this study, by a combination of in vitro biophysical measurements and time-resolved exocytosis measurements in adrenal chromaffin cells, we find that mutations of the N-terminal interaction layers of the SNARE bundle inhibit assembly in vitro and vesicle priming in vivo without detectable changes in triggering speed or fusion pore properties. In contrast, mutations in the last C-terminal layer decrease triggering speed and fusion pore duration. Between the two domains, we identify a region exquisitely sensitive to mutation, possibly constituting a switch. Our data are consistent with a model in which the N terminus of the SNARE complex assembles during vesicle priming, followed by Ca(2+)-triggered C-terminal assembly and membrane fusion.
Resumo:
Human Fas ligand (L) (CD95L) and tumor necrosis factor (TNF)-alpha undergo metalloproteinase-mediated proteolytic processing in their extracellular domains resulting in the release of soluble trimeric ligands (soluble [s]FasL, sTNF-alpha) which, in the case of sFasL, is thought to be implicated in diseases such as hepatitis and AIDS. Here we show that the processing of sFasL occurs between Ser126 and Leu127. The apoptotic-inducing capacity of naturally processed sFasL was reduced by >1,000-fold compared with membrane-bound FasL, and injection of high doses of recombinant sFasL in mice did not induce liver failure. However, soluble FasL retained its capacity to interact with Fas, and restoration of its cytotoxic activity was achieved both in vitro and in vivo with the addition of cross-linking antibodies. Similarly, the marginal apoptotic activity of recombinant soluble TNF-related apoptosis-inducing ligand (sTRAIL), another member of the TNF ligand family, was greatly increased upon cross-linking. These results indicate that the mere trimerization of the Fas and TRAIL receptors may not be sufficient to trigger death signals. Thus, the observation that sFasL is less cytotoxic than membrane-bound FasL may explain why in certain types of cancer, systemic tissue damage is not detected, even though the levels of circulating sFasL are high.
Resumo:
An ab initio structure prediction approach adapted to the peptide-major histocompatibility complex (MHC) class I system is presented. Based on structure comparisons of a large set of peptide-MHC class I complexes, a molecular dynamics protocol is proposed using simulated annealing (SA) cycles to sample the conformational space of the peptide in its fixed MHC environment. A set of 14 peptide-human leukocyte antigen (HLA) A0201 and 27 peptide-non-HLA A0201 complexes for which X-ray structures are available is used to test the accuracy of the prediction method. For each complex, 1000 peptide conformers are obtained from the SA sampling. A graph theory clustering algorithm based on heavy atom root-mean-square deviation (RMSD) values is applied to the sampled conformers. The clusters are ranked using cluster size, mean effective or conformational free energies, with solvation free energies computed using Generalized Born MV 2 (GB-MV2) and Poisson-Boltzmann (PB) continuum models. The final conformation is chosen as the center of the best-ranked cluster. With conformational free energies, the overall prediction success is 83% using a 1.00 Angstroms crystal RMSD criterion for main-chain atoms, and 76% using a 1.50 Angstroms RMSD criterion for heavy atoms. The prediction success is even higher for the set of 14 peptide-HLA A0201 complexes: 100% of the peptides have main-chain RMSD values < or =1.00 Angstroms and 93% of the peptides have heavy atom RMSD values < or =1.50 Angstroms. This structure prediction method can be applied to complexes of natural or modified antigenic peptides in their MHC environment with the aim to perform rational structure-based optimizations of tumor vaccines.
Resumo:
CEA as well as normal cross-reacting antigens (NCA) are fixed to the cell membrane via phosphatidylinositol (PI). To find out whether these antigens are internalized after antibody contact, acid pH desorption was compared to phospholipase C (PLC)-mediated cleavage of the antigen anchor. With the former procedure, marked differences in the desorbability of individual MAbs were noted, while PLC was able to cleave off surface-bound immune complexes irrespective of the MAb involved. From this it is concluded that internalization of MAb complexes of CEA/NCA, if occurring at all, is a low efficiency process.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt"
Resumo:
This article presents a new theory that separates the levels of communication and relates them circularly, namely, by separating time from space/meaning variables. Documenting this proposition requires sequential microdescriptions--a far-out project in the field of family therapy. In an extensive study of clinical and nonclinical families, starting with available microanalytic data on nonverbal parent-infant dialogue, distinct time organizations have been found to modify the degree of circularity between the levels of interaction according to the observed types of engagement, that is, consensual, conflictual, and paradoxical. The double description of the dyad as a totality versus the dyad as a framing/developing organization imparts crucial information on how development proceeds in dyadic, co-evolutive systems, and presumably in larger ones too. In this perspective, a model is elaborated and then applied to a case description in our therapeutic consultation.
Resumo:
How much would output increase if underdeveloped economies were toincrease their levels of schooling? We contribute to the development accounting literature by describing a non-parametric upper bound on theincrease in output that can be generated by more schooling. The advantage of our approach is that the upper bound is valid for any number ofschooling levels with arbitrary patterns of substitution/complementarity.Another advantage is that the upper bound is robust to certain forms ofendogenous technology response to changes in schooling. We also quantify the upper bound for all economies with the necessary data, compareour results with the standard development accounting approach, andprovide an update on the results using the standard approach for a largesample of countries.
GPs and patients with chronic pain: is the breakdown of doctor-patient relationship bound to happen?
Resumo:
hShroom1 (hShrm1) is a member of the Apx/Shroom (Shrm) protein family and was identified from a yeast two-hybrid screen as a protein that interacts with the cytoplasmic domain of melanoma cell adhesion molecule (MCAM). The characteristic signature of the Shrm family is the presence of a unique domain, ASD2 (Apx/Shroom domain 2). mRNA analysis suggests that hShrm1 is expressed in brain, heart, skeletal muscle, colon, small intestine, kidney, placenta and lung tissue, as well a variety of melanoma and other cell lines. Co-immunoprecipitation and bioluminescence resonance energy transfer (BRET) experiments indicate that hShrm1 and MCAM interact in vivo and by immunofluorescence microscopy some co-localization of these proteins is observed. hShrm1 partly co-localises with beta-actin and is found in the Triton X-100 insoluble fraction of melanoma cell extracts. We propose that hShrm1 is involved in linking MCAM to the cytoskeleton.
Resumo:
We discuss the relation between continuum bound states (CBSs) localized on a defect, and surface states of a finite periodic system. We model an experiment of Capasso et al. [F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S-N. G. Chu, and A. Y. Cho, Nature (London) 358, 565 (1992)] using the transfer-matrix method. We compute the rate for intrasubband transitions from the ground state to the CBS and derive a sum rule. Finally we show how to improve the confinement of a CBS while keeping the energy fixed.