853 resultados para boron-doped diamond (BDD)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anodic voltammetric behavior of 4-chlorophenol (4-CF) in aqueous solution has been studied on a Boron-doped diamond electrode using square wave voltammetry (SWV). After optimization of the experimental conditions, 4-CF was analyzed in pure and natural waters using a Britton-Robinson buffer with pH = 6.0 as the supporting electrolyte. Oxidation occurs at 0.80 V vs Ag/AgCl in a two-electron process controlled by adsorption of the species. The detection limits obtained were 6.4 µg L-1 in pure water and 21.5 µg L-1 for polluted water taken from a local creek, respectively. The combination of square wave voltammetry and diamond electrodes is an interesting and desirable alternative for analytical determinations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After an introductory discussion emphasising the importance of electrochemistry for the so-called Green Chemical Processes, the article presents a short discussion of the classical ozone generation technologies. Next a revision of the electrochemical ozone production technology focusing on such aspects as: fundamentals, latest advances, advantages and limitations of this technology is presented. Recent results about fundamentals of electrochemical ozone production obtained in our laboratory, using different electrode materials (e.g. boron doped diamond electrodes, lead dioxide and DSAÒ-based electrodes) also are presented. Different chemical processes of interest to the solution of environmental problems involving ozone are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review presents a brief account concerning the production, characterization and evolution of the knowledge in the area of diamond and boron-doped diamond films. The most important methods used for the growth of these films, such as chemical vapor deposition and high pressure/high temperature systems, as well as the several kinds of reactors which can be employed are reviewed. However, larger emphasis is given to the CVD method. Morphological, structural and electric properties of these films, as well as their role in the performance of voltammetric electrodes for electrochemistry and electroanalytical chemistry are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A boron-doped diamond electrode is used for determination of Mn(II) in atmospheric particulate matter by square wave cathodic stripping voltammetry. The analytical curve was linear for Mn(II) concentrations between 5.0 and 37.5 µg L-1, with quantification limit of 3.6 µg L-1. The precision was evaluated by the relative standard deviation, with values between 5.1% and 9.3%. The electrode is free of adsorption, minimizing memory effects. Samples collected in the workplace atmosphere of a foundry had Mn(II) concentrations between 0.4 and 4 µg m-3. No significant differences were observed between the proposed method and inductively coupled plasma optical emission spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of square-wave voltammetry in conjunction with a cathodically pre-treated diamond electrode for the analytical determination of sodium cyclamate is described. The samples were analyzed as received in a 0.5 mol L-1 H2SO4 solution in the concentration range from 5.0 × 10-5 mol L-1 to 4.1 × 10-4 mol L-1, with a detection limit of 4.8 × 10-6 mol L-1. The RSD was smaller than 1.2 % and the proposed method was applied with success in the determination of sodium cyclamate in several dietary products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potentiality of the use of ultrasound radiation in association with a boron-doped diamond electrode was evaluated on the voltammetric determination of the pesticide carbaryl. Improvements in the sensitivity, limit of detection and reproducibility of the measurements were observed due to both, the enhancement of mass transport and the cleaning of the electrode surface provided by ultrasound. Satisfactory recovery levels for carbaryl in pure water (96-98%) and pineapple juice (89-92%) for quiescent and sonovoltammetric methodologies were obtained. These methodologies can be alternative tools for the analyses of pesticides in fruit samples, mainly the insonated condition that improve the analytical performance and dispense intermediary cleanings of the electrode surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and reliable voltammetric method is presented for the determination of amitriptyline using a boron-doped diamond electrode in 0.1 mol L-1 sulfuric acid solution as the support electrolyte. Under optimized differential pulse voltammetry conditions (modulation time 5 ms, scan rate 70 mV s-1, and pulse amplitude 120 mV), the electrode provides linear responses to amitriptyline in the concentration range 1.05 to 92.60 µmol L-1 and at a detection limit of 0.52 µmol L-1. The proposed method was successfully applied in pharmaceutical formulations, with results similar to those obtained using UV-vis spectrophotometric method as reference (at 95% confidence level), as recommended by the Brazilian Pharmacopoeia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrodegradation of atrazine in water was performed using homemade (PA and PB) and purchased (PC) boron-doped diamond anodes. The degradation was monitored off-line by analyzing total organic carbon and high performance liquid chromatography with diode array detector (HPLC-DAD) and at-line by UV spectroscopy. The spectra were recorded every 2 min. The rank deficiency problem was resolved by assembling an augmented column-wise matrix. HPLC was employed to separate the original and byproducts degradation components. Aiming the same goal, multivariate curve resolution - alternating least squares (MCR-ALS) was applied to resolve the UV spectroscopic data. Comparison between HPLC and MCR-ALS separations is presented. By using MCR-ALS the spectra of atrazine and two byproducts were successfully resolved and the resulted concentration profiles properly represented the system studied. The ALS explained variance (R2) for PA, PB and PC was equal to 99.99% for all of them and the lack of fit for PA, PB and PC were 0.39, 0.34 and 0.54 respectively. The correlation (R) between the recovered and pure spectra were calculate for each electrodegradation, validating the MCR-ALS results. The average R was equal to 0.997. The spectral and concentration profiles described with this new approach are in agreement with HPLC-DAD results. The proposed method is an alternative to classical analyses for monitoring of the degradation process, mainly due to the simplicity, fast results and economy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimization of the main parameters of SWASV using boron-doped diamond electrode was described for the simultaneous determination of Zn, Cd, Pb and Cu free in coconut water. The values of electroanalytical parameters studied were optimized with the factorial design and center composite design. The optimized parameters for the preconcentration of metals were -1.50 V for potential, and 240 s for deposition time. For SWV, the optimized value was 11.56 mV for step potential. In addition, frequency and pulse height were defined at 100 Hz and 55 mV, respectively. Furthermore, the concentration of the supporting electrolyte (acetate buffer, pH 4.7) was optimized in 0.206 mol L-1. The optimized procedure was applied in two samples of coconut water: natural and processed. The limits of detection (LOD) obtained for Zn, Cd, Pb and Cu were 7.2; 4.4; 3.3 and 1.5 µg L-1, respectively. The concentrations of Cd and Pb were not detected. On the other hand, the values found for the concentrations of Zn and Cu were: < LOD (29 µg L-1) and (6.8 ± 0.9) µg L-1 for the natural sample; and (85.8 ± 4.2) µg L-1 and (7.7 ± 0.6) µg L-1 for the processed sample, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical detection of the hazardous pollutant 4-nitrophenol (4-NP) at low potentials, in order to avoid matrix interferences, is an important research challenge. This study describes the development, electrochemical characterization and utilization of a multiwall carbon nanotube (MWCNT) film electrode for the quantitative determination of 4-NP in natural water. Electrochemical impedence spectroscopy measurements showed that the modified surface exhibits a decrease of ca. 13 times in the charge transfer resistance when compared with a bare glassy carbon (GC) surface. Voltammetric experiments showed the possibility to oxidize a hydroxylamine layer (produced by the electrochemical reduction of 4-NP on the GC/MWNCT surface) in a potential region which is approximately 700 mV less positive than that needed to oxidize 4-NP, thus minimizing the interference of matrix components. The limit of detection for 4-NP obtained using square-wave voltammetry (0.12 mu mol L(-1)) was lower than the value advised by EPA. A natural water sample from a dam located in Sao Carlos (Brazil) was spiked with 4-NP and analyzed by the standard addition method using thee GC/MWCNT electrode, without any further purification step. the recovery procedure yielded a value of 96.5% for such sample, thus confirming the suitability of the developed method to determine 4-NP in natural water samples. The electrochemical determination was compared with that obtained by HPLC with UV-vis detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports experiments involving the electrochemical combustion of humic acid (HA) and removal of algae from pond water. An electrochemical flow reactor with a boron-doped diamond film anode was used and constant current experiments were conducted in batch recirculation mode. The mass transfer characteristics of the electrochemical device were determined by voltammetric experiments in the potential region of water stability, followed by a controlled current experiment in the potential region of oxygen evolution. The average mass transfer coefficient was 5.2 x 10(-5) m s(-1). The pond water was then processed to remove HA and algae in the conditions in which the reaction combustion occurred under mass transfer control. To this end, the mass transfer coefficient was used to estimate the initial limiting current density applied in the electrolytic experiments. As expected, all the parameters analyzed here-solution absorbance at 270 nm, total phenol concentration and total organic carbon concentration-decayed according to first-order kinetics. Since the diamond film anode successfully incinerated organic matter, the electrochemical system proved to be predictable and programmable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a study of the electrocatalysis of ethanol oxidation reactions in an acidic medium on Pt-CeO(2)/C (20 wt.% of Pt-CeO(2) on carbon XC-72R), prepared in different mass ratios by the polymeric precursor method. The mass ratios between Pt and CeO(2) (3:1, 2:1, 1:1, 1:2, 1:3) were confirmed by Energy Dispersive X-ray Analysis (EDAX). X-ray diffraction (XRD) structural characterization data shows that the Pt-CeO(2)/C catalysts are composed of nanosized polycrystalline non-alloyed deposits, from which reflections corresponding to the fcc (Pt) and fluorite (CeO(2)) structures were clearly observed. The mean crystallite sizes calculated from XRD data revealed that, independent of the mass ratio, a value close to 3 nm was obtained for the CeO(2) particles. For Pt, the mean crystallite sizes were dependent on the ratio of this metal in the catalysts. Low platinum ratios resulted in small crystallites. and high Pt proportions resulted in larger crystallites. The size distributions of the catalysts particles, determined by XRD, were confirmed by Transmission Electron Microscope (TEM) imaging. Cyclic voltammetry and chronoamperometic experiments were used to evaluate the electrocatalytic performance of the different materials. In all cases, except Pt-CeO(2)/C 1:1, the Pt-Ceo(2)/C catalysts exhibited improved performance when compared with Pt/C. The best result was obtained for the Pt-CeO(2)/C 1:3 catalyst, which gave better results than the Pt-Ru/C (Etek) catalyst. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of variations in the composition for ternary catalysts of the type Pt-x(Ru-Ir)(1-x)/C on the methanol oxidation reaction in acid media for x values of 0.25, 0.50 and 0.75 is reported. The catalysts were prepared by the sol-gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic absorption spectroscopy (AAS) and energy dispersive X-ray (EDX) analyses. The nanometric character (2.8-3.2 nm) of the sol-gel deposits was demonstrated by XRD and TEM while EDX and AAS analyses showed that the metallic ratio in the compounds was very near to the expected one. Cyclic voltammograms for methanol oxidation revealed that the reaction onset occur at less positive potentials in all the ternary catalysts tested here when compared to a Pt-0.75-Ru-0.25/C (E-Tek) commercial composite. Steady-state polarization experiments (Tafel plots) showed that the Pt-0.25(Ru-Ir)(0.75)/C catalyst is the more active one for methanol oxidation as revealed by the shift of the reaction onset towards lower potentials. In addition, constant potential electrolyses suggest that the addition of Ru and Ir to Pt decreases the poisoning effect of the strongly adsorbed species generated during methanol oxidation. Consequently, the Pt-0.25 (Ru-Ir)(0.75)/C Composite catalyst is a very promising one for practical applications. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon-supported platinum is commonly used as an anode electrocatalyst in low-temperature fuel cells fueled with methanol. The cost of Pt and the limited world supply are significant barriers for the widespread use of this type of fuel cell. Moreover, Pt used as anode material is readily poisoned by carbon monoxide produced as a byproduct of the alcohol oxidation. Although improvements in the catalytic performance for methanol oxidation were attained using Pt-Ru alloys, the state-of-the-art Pt-Ru catalyst needs further improvement because of relatively low catalytic activity and the high cost of noble Pt and Ru. For these reasons, the development of highly efficient ternary platinum-based catalysts is an important challenge. Thus, various compositions of ternary Pt(x)-(RuO(2)-M)(1-x)/C composites (M = CeO(2), MoO(3), or PbO(x)) were developed and further investigated as catalysts for the methanol electro-oxidation reaction. The characterization carried out by X-ray diffraction, energy-dispersive X-ray analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry point out that the different metallic oxides were successfully deposited on the Pt/C, producing small and well-controlled nanoparticles in the range of 2.8-4.2 nm. Electrochemical experiments demonstrated that the Pt(0.50)(RuO(2)-CeO(2))(0.50)/C composite displays the higher catalytic activity toward the methanol oxidation reaction (lowest onset potential of 207 mV and current densities taken at 450 mV, which are 140 times higher than those at commercial Pt/C), followed by the Pt(0.75)(RuO(2)-MoO(3))(0.25)/C composite. In addition, both of these composites produced low quantities of formic acid and formaldehyde when compared to a commercially available Pt(0.75)-Ru(0.25)/C composite (from E-Tek, Inc.), suggesting that the oxidation of methanol occurs mainly by a pathway that produces CO(2) forming the intermediary CO(ads).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)