959 resultados para bone tissue engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium foams fabricated by a new powder metallurgical process have bimodal pore distribution architecture (i.e., macropores and micropores), mimicking natural bone. The mechanical properties of the titanium foam with low relative densities of approximately 0.20-0.30 are close to those of human cancellous bone. Also, mechanical properties of the titanium foams with high relative densities of approximately 0.50-0.65 are close to those of human cortical bone. Furthermore, titanium foams exhibit good ability to form a bonelike apatite layer throughout the foams after pretreatment with a simple thermochemical process and then immersion in a simulated body fluid. The present study illustrates the feasibility of using the titanium foams as implant materials in bone tissue engineering applications, highlighting their excellent biomechanical properties and bioactivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium alloy scaffolds for bone tissue engineering are receiving increasing attention because their porous structure and mechanical properties can be adjusted to match those of bone. In particular, there is an enormous potential to increase the life of such implant material if the porous structure can be imparted with shape memory properties. In the present study, TiNi scaffolds with a porous structure and high porosities up to 75% were fabricated by powder metallurgy. The porous structure was characterized by scanning electron microscope. The mechanical properties, the shape memory and superelastic effects were investigated by differential scanning calorimetry, nanoindentation and compressive tests. Results indicate that the porous TiNi scaffolds display an open-cell porous structure which provides new bone tissue ingrowth ability. The mechanical properties of the TiNi scaffolds can be tailored to match those of natural bone. Furthermore, the TiNi scaffolds show good shape memory and superelastic effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium–nickel (TiNi) shape memory alloy (SMA) foams with an open-cell porous structure were fabricated by space-holder sintering process and characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The mechanical properties and shape memory properties of the TiNi foam samples were investigated using compressive test. Results indicate that the plateau stresses and elastic moduli of the foams under compression decrease with the increase of their porosities. The plateau stresses and elastic moduli are measured to be from 1.9 to 38.3 MPa and from 30 to 860 MPa for the TiNi foam samples with porosities ranged from 71% to 87%, respectively. The mechanical properties of the TiNi alloy foams can be tailored to match those of bone. The TiNi alloy foams exhibit shape memory effect (SME), and it is found that the recoverable strain due to SME decreases with the increase of foam porosity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous titanium (Ti) and titanium alloys are promising scaffold biomaterials for bone tissue engineering, because they have the potential to provide new bone tissue ingrowth abilities and low elastic modulus to match that of
natural bone. In the present study, a new highly porous Ti6Ta4Sn alloy scaffold with the addition of biocompatible alloying elements (tantalum (Ta) and tin (Sn)) was prepared using a space-holder sintering method. The
strength of the Ti6Ta4Sn scaffold with a porosity of 75% was found to be significantly higher than that of a pure Ti scaffold with the same porosity. The elastic modulus of the porous alloy can be customized to match that of
human bone by adjusting its porosity. In addition, the porous Ti6Ta4Sn alloy exhibited an interconnected porous structure, which enabled the ingrowth of new bone tissues. Cell culture results revealed that human SaOS2
osteoblast-like cells grew and spread well on the surfaces of the solid alloy, and throughout the porous scaffold. The surface roughness of the alloy showed a significant effect on the cell behavior, and the optimum surface
roughness range for the adhesion of the SaOS2 cell on the alloy was 0.15 to 0.35 mm. The present study illustrated the feasibility of using the porous Ti6Ta4Sn alloy scaffold as an orthopedic implant material with a special
emphasis on its excellent biomechanical properties and in vitro biocompatibility with a high preference by osteoblast-like cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium, zirconium and TiZr binary alloy were fabricated using a powder metallurgical method. Appropriate surface modifying techniques were conducted on the metals to render an ability for apatite formation. Their biocompatibility has also been assessed. These materials showed potential for biomedical applications because of their excellent bioactivity and biocompatibility which may improve bonding of the implants to juxtaposed bone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous titanium (Ti) and Ti alloys are important scaffold materials for bone tissue engineering. In the present study, a new type of porous Ti alloy scaffold with biocompatible alloying elements, that is, niobium (Nb) and zirconium (Zr), was prepared by a space-holder sintering method. This porous TiNbZr scaffold with a porosity of 69% exhibits a mechanical strength of 67MPa and an elastic modulus of 3.9GPa, resembling the mechanical properties of cortical bone. To improve the osteoconductivity, a calcium phosphate (Ca/P) coating was applied to the surface of the scaffold using a biomimetic method. The biocompatibility of the porous TiNbZr alloy scaffold before and after the biomimetic modification was assessed using the SaOS2 osteoblast–like cells. Cell culture results indicated that the porous TiNbZr scaffold is more favorable for cell adhesion and proliferation than its solid counterpart. By applying a Ca/P coating, the cell proliferation rate on the Ca/P-coated scaffold was significantly improved. The results suggest that high-strength porous TiNbZr scaffolds with an appropriate osteoconductive coating could be potentially used for bone tissue engineering application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, porous Ti14Nb4Sn alloys were fabricated using a space holder sintering method, resulting in a porosity of ~70%. Scanning electron microscopy (SEM) analyses revealed a combination of both macropore and micropore structures. The fabricated titanium alloy scaffolds exhibited a similar structure to that of natural bone, which is expected to improve bone implant longevity. Bacterial cells of Pseudomonas aeruginosa ATCC 9027 were employed for the in vitro test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effects of homogenous demineralized dentin matrix (HDDM) slices and platelet-rich plasma (PRP) in surgical defects created in the parietal bones of alloxan-induced diabetic rabbits, treated with a guided bone regeneration technique. Biochemical, radiographic, and histological analyses were performed. Sixty adult New Zealand rabbits were divided into five groups of 12: normoglycaemic (control, C), diabetic (D), diabetic with a PTFE membrane (DM), diabetic with a PTFE membrane and HDDM slices (DM-HDDM), and diabetic with PTFE membrane and PRP (DM-PRP). The quantity and quality of bone mass was greatest in the DM-HDDM group (respective radiographic and histological analyses: at 15 days, 71.70±16.50 and 50.80±1.52; 30 days, 62.73±16.51 and 54.20±1.23; 60 days, 63.03±11.04 and 59.91±3.32; 90 days, 103.60±24.86 and 78.99±1.34), followed by the DM-PRP group (respective radiographic and histological analyses: at 15 days 23.00±2.74 and 20.66±7.45; 30 days 31.92±6.06 and 25.31±5.59; 60 days 25.29±16.30 and 46.73±2.07; 90 days 38.10±14.04 and 53.38±9.20). PRP greatly enhanced vascularization during the bone repair process. Abnormal calcium metabolism was statistically significant in the DM-PRP group (P<0.001) for all four time intervals studied, especially when compared to the DM-HDDM group. Alkaline phosphatase activity was significantly higher in the DM-HDDM group (P<0.001) in comparison to the C, D, and DM-PRP groups, confirming the findings of intense osteoblastic activity and increased bone mineralization. Thus, HDDM promoted superior bone architectural microstructure in bone defects in diabetic rabbits due to its effective osteoinductive and osteoconductive activity, whereas PRP stimulated angiogenesis and red bone marrow formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to characterize the physicochemical properties of bacterial cellulose (BC) membranes functionalized with osteogenic growth peptide (OGP) and its C-terminal pentapeptide OGP[10-14], and to evaluate in vitro osteoinductive potential in early osteogenesis, besides, to evaluate cytotoxic, genotoxic and/or mutagenic effects. Peptide incorporation into the BC membranes did not change the morphology of BC nanofibers and BC crystallinity pattern. The characterization was complemented by Raman scattering, swelling ratio and mechanical tests. In vitro assays demonstrated no cytotoxic, genotoxic or mutagenic effects for any of the studied BC membranes. Culture with osteogenic cells revealed no difference in cell morphology among all the membranes tested. Cell viability/proliferation, total protein content, alkaline phosphatase activity and mineralization assays indicated that BC-OGP membranes enabled the highest development of the osteoblastic phenotype in vitro. In conclusion, the negative results of cytotoxicity, genotoxicity and mutagenicity indicated that all the membranes can be employed for medical supplies, mainly in bone tissue engineering/regeneration, due to their osteoinductive properties.