993 resultados para bone morphogenic pathway
Resumo:
OBJECTIVE: Macrophages play a critical role in intestinal wound repair. However, the molecular pathways that regulate macrophage wound repair activities remain poorly understood. The aim of this study was to evaluate the role of GM-CSF receptor signaling in the wound repair activities of macrophages. METHODS: Murine macrophages were differentiated from bone marrow cells and human macrophages from monocytes isolated from peripheral blood mononuclear cells of Crohn's disease (CD) patients. In vitro models were used to study the repair activities of macrophages. RESULTS: We provide evidence that GM-CSF receptor signaling is required for murine macrophages to promote epithelial repair. In addition, we demonstrate that the deficient repair properties of macrophages from CD patients with active disease can be recovered via GM-CSF therapy. CONCLUSION: Our data support a critical role of the GM-CSF signaling pathway in the pro-repair activities of mouse and human macrophages. © 2014 S. Karger AG, Basel.
Resumo:
? Introduction ? Bone fracture healing and healing problems ? Biomaterial scaffolds and tissue engineering in bone formation - Bone tissue engineering - Biomaterial scaffolds - Synthetic scaffolds - Micro- and nanostructural properties of scaffolds - Conclusion ? Mesenchymal stem cells and osteogenesis - Bone tissue - Origin of osteoblasts - Isolation and characterization of bone marrow derived MSC - In vitro differentiation of MSC into osteoblast lineage cells - In vivo differentiation of MSC into bone - Factors and pathways controlling osteoblast differentiation of hMSC - Defining the relationship between osteoblast and adipocyte differentiation from MSC - MSC and sex hormones - Effect of aging on osteoblastogenesis - Conclusion ? Embryonic, foetal and adult stem cells in osteogenesis - Cell-based therapies for bone - Specific features of bone cells needed to be advantageous for clinical use - Development of therapeutic biological agents - Clinical application concerns - Conclusion ? Platelet-rich plasma (PRP), growth factors and osteogenesis - PRP effects in vitro on the cells involved in bone repair - PRP effects on osteoblasts - PRP effects on osteoclasts - PRP effects on endothelial cells - PRP effects in vivo on experimental animals - The clinical use of PRP for bone repair - Non-union - Distraction osteogenesis - Spinal fusion - Foot and ankle surgery - Total knee arthroplasty - Odontostomatology and maxillofacial surgery - Conclusion ? Molecular control of osteogenesis - TGF-β signalling - FGF signalling - IGF signalling - PDGF signalling - MAPK signalling pathway - Wnt signalling pathway - Hedgehog signalling - Notch signalling - Ephrin signalling - Transcription factors regulating osteoblast differentiation - Conclusion ? Summary This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed.
Resumo:
The main clinical features in four patients with IgG1k paraproteinaemia and acquired complement deficiency included xanthomatous skin lesions (in three), panniculitis (in three) and hepatitis (in two). Hypocomplementaemia concerned the early classical pathway components--in particular C1q. Metabolic studies employing 125I-C1q revealed a much faster catabolism of this protein in the four patients than in five normal controls and three patients with cryoglobulinaemia (mean fractional catabolic rates respectively: 23.35%/h; 1.44%/h; 5.84%/h). Various experiments were designed to characterize the mechanism of the hypocomplementaemia: the patients' serum, purified paraprotein, blood cells, bone marrow cells, or xanthomatous skin lesions did not produce significant complement activation or C1q binding. When three of the patients (two with panniculitis and hepatitis) were injected with 123I-C1q, sequential gamma-camera imaging demonstrated rapid accumulation of the radionuclide in the liver, suggesting that complement activation takes place in the liver where it could produce damage.
Resumo:
PURPOSE OF REVIEW: The review aims at comprehensively discussing our current knowledge on bone metastases incidence in non-small cell lung cancer (NSCLC), their related complications as well as clinical impact in patients suffering from advanced disease. RECENT FINDINGS: After evoking the use of zoledronic acid as the established standard of care until recently, the new class of drugs available to prevent skeletal related events and targeting receptor activator of nuclear factor-kappa B (RANK) will be emphasized, reporting on denosumab clinical trials, a RANK-ligand (RANKL) targeting monoclonal antibody. Biological hypothesis regarding their mechanisms of action as well a potential direct impact on tumor cells are described according to the most recent laboratory as well as hypothesis-generating clinical data. SUMMARY: Targeting the RANK pathway is an efficient way to prevent complications of bone metastases in NSCLC. Interesting additional direct effects on tumor biology and evolution are being analyzed and prospectively assessed in clinical trials.
Resumo:
Background: Bone morphogenetic proteins (BMPs) have been shown to participate in the patterning and specification of several tissues and organs during development and to regulate cell growth, differentiation and migration in different cell types. BMP-mediated cell migration requires activation of the small GTPase Cdc42 and LIMK1 activities. In our earlier report we showed that activation of LIMK1 also requires the activation of PAKs through Cdc42 and PI3K. However, the requirement of additional signaling is not clearly known. Methodology/Principal Findings: Activation of p38 MAPK has been shown to be relevant for a number of BMP-2¿s physiological effects. We report here that BMP-2 regulation of cell migration and actin cytoskeleton remodelling are dependent on p38 activity. BMP-2 treatment of mesenchymal cells results in activation of the p38/MK2/Hsp25 signaling pathway downstream from the BMP receptors. Moreover, chemical inhibition of p38 signaling or genetic ablation of either p38¿ or MK2 blocks the ability to activate the downstream effectors of the pathway and abolishes BMP-2-induction of cell migration. These signaling effects on p38/MK2/Hsp25 do not require the activity of either Cdc42 or PAK, whereas p38/MK2 activities do not significantly modify the BMP-2-dependent activation of LIMK1, measured by either kinase activity or with an antibody raised against phospho-threonine 508 at its activation loop. Finally, phosphorylated Hsp25 colocalizes with the BMP receptor complexes in lamellipodia and overexpression of a phosphorylation mutant form of Hsp25 is able to abolish the migration of cells in response to BMP-2. Conclusions: These results indicate that Cdc42/PAK/LIMK1 and p38/MK2/Hsp25 pathways, acting in parallel and modulating specific actin regulatory proteins, play a critical role in integrating responses during BMP-induced actin reorganization and cell migration.
Resumo:
The fusion of bone marrow (BM) hematopoietic cells with hepatocytes to generate BM derived hepatocytes (BMDH) is a natural process, which is enhanced in damaged tissues. However, the reprogramming needed to generate BMDH and the identity of the resultant cells is essentially unknown. In a mouse model of chronic liver damage, here we identify a modification in the chromatin structure of the hematopoietic nucleus during BMDH formation, accompanied by the loss of the key hematopoietic transcription factor PU.1/Sfpi1 (SFFV proviral integration 1) and gain of the key hepatic transcriptional regulator HNF-1A homeobox A (HNF-1A/Hnf1a). Through genome-wide expression analysis of laser captured BMDH, a differential gene expression pattern was detected and the chromatin changes observed were confirmed at the level of chromatin regulator genes. Similarly, Tranforming Growth Factor-β1 (TGF-β1) and neurotransmitter (e.g. Prostaglandin E Receptor 4 [Ptger4]) pathway genes were over-expressed. In summary, in vivo BMDH generation is a process in which the hematopoietic cell nucleus changes its identity and acquires hepatic features. These BMDHs have their own cell identity characterized by an expression pattern different from hematopoietic cells or hepatocytes. The role of these BMDHs in the liver requires further investigation.
Resumo:
Allogeneic bone marrow transplantation (alloBMT) is the only curative therapy for chronic myelogenous leukemia (CML). This success is explained by the delivery of high doses of antineoplastic agents followed by the rescue of marrow function and the induction of graft-versus-leukemia reaction mediated by allogeneic lymphocytes against host tumor cells. This reaction can also be induced by donor lymphocyte infusion (DLI) producing remission in most patients with CML who relapse after alloBMT. The immunological mechanisms involved in DLI therapy are poorly understood. We studied five CML patients in the chronic phase, who received DLI after relapsing from an HLA-identical BMT. Using flow cytometry we evaluated cellular activation and apoptosis, NK cytotoxicity, lymphocytes producing cytokines (IL-2, IL-4 and IFN-gamma), and unstimulated (in vivo) lymphocyte proliferation. In three CML patients who achieved hematological and/or cytogenetic remission after DLI we observed an increase of the percent of activation markers on T and NK cells (CD3/DR, CD3/CD25 and CD56/DR), of lymphocytes producing IL-2 and IFN-gamma, of NK activity, and of in vivo lymphocyte proliferation. These changes were not observed consistently in two of the five patients who did not achieve complete remission with DLI. The percent of apoptotic markers (Fas, FasL and Bcl-2) on lymphocytes and CD34-positive cells did not change after DLI throughout the different study periods. Taken together, these preliminary results suggest that the therapeutic effect of DLI in the chronic phase of CML is mediated by classic cytotoxic and proliferative events involving T and NK cells but not by the Fas pathway of apoptosis.
Resumo:
Taurine has positive effects on bone metabolism. However, the effects of taurine on osteoblast apoptosis in vitro have not been reported. The aim of this study was to investigate the activity of taurine on apoptosis of mouse osteoblastic MC3T3-E1 cells. The data showed that 1, 5, 10, or 20 mM taurine resulted in 16.7, 34.2, 66.9, or 63.75% reduction of MC3T3-E1 cell apoptosis induced by the serum deprivation (serum-free α-MEM), respectively. Taurine (1, 5, or 10 mM) also reduced cytochrome c release and inhibited activation of caspase-3 and -9, which were measured using fluorogenic substrates for caspase-3/caspase-9, in serum-deprived MC3T3-E1 cells. Furthermore, taurine (10 mM) induced extracellular signal-regulated kinase (ERK) phosphorylation in MC3T3-E1 cells. Knockdown of the taurine transporter (TAUT) or treatment with the ERK-specific inhibitor PD98059 (10 μM) blocked the activation of ERK induced by taurine (10 mM) and abolished the anti-apoptotic effect of taurine (10 mM) in MC3T3-E1 cells. The present results demonstrate for the first time that taurine inhibits serum deprivation-induced osteoblast apoptosis via the TAUT/ERK signaling pathway.
Resumo:
Affiliation: Unité de recherche en Arthrose, Centre de recherche du Centre Hospitalier de l'Université de Montréal, Hôpital Notre-Dame
Resumo:
We reported recently that bovine theca interna cells in primary culture express several type-I and type-II receptors for bone morphogenetic proteins (BMPs). The same cells express at least two potential ligands for these receptors (BMP-4 and - 7), whereas bovine granulosa cells and oocytes express BMP-6. Therefore, BMPs of intrafollicular origin may exert autocrine/paracrine actions to modulate theca cell function. Here we report that BMP-4, - 6, and - 7 potently suppress both basal ( P < 0.0001; respective IC50 values, 0.78, 0.30, and 1.50 ng/ml) and LH-induced ( P < 0.0001; respective IC50 values, 5.00, 0.55, and 4.55 ng/ml) androgen production by bovine theca cells while having only a moderate effect on progesterone production and cell number. Semiquantitative RT-PCR showed that all three BMPs markedly reduced steady-state levels of mRNA for P450c17. Levels of mRNA encoding steroidogenic acute regulatory protein, P450scc, and 3 beta-hydroxysteroid dehydrogenase were also reduced but to a much lesser extent. Immunocytochemistry confirmed a marked reduction in cellular content of P450c17 protein after BMP treatment ( P < 0.001). Exposure to BMPs led to cellular accumulation of phosphorylated Smad1, but not Smad2, confirming that the receptors signal via a Smad1 pathway. The specificity of the BMP response was further explored by coincubating cells with BMPs and several potential BMP antagonists, chordin, gremlin, and follistatin. Gremlin and chordin were found to be effective antagonists of BMP-4 and - 7, respectively, and the observation that both antagonists enhanced ( P < 0.01) androgen production in the absence of exogenous BMP suggests an autocrine/paracrine role for theca-derived BMP- 4 and - 7 in modulating androgen production. Collectively, these data indicate that an intrafollicular BMP signaling pathway contributes to the negative regulation of thecal androgen production and that ovarian hyperandrogenic dysfunction could be a result of a defective autoregulatory pathway involving thecal BMP signaling.
Resumo:
Background Chronic myeloproliferative disorders (MPDs) are clonal haematopoietic stem cell malignancies characterised by an accumulation of mature myeloid cells in bone marrow and peripheral blood. Deregulation of the apoptotic machinery may be associated with MPD physiopathology. Aims To evaluate expression of death receptors` family members, mononuclear cell apoptosis resistance, and JAK2 allele burden. Subjects and Methods Bone marrow haematopoietic progenitor CD34 cells were separated using the Ficoll-hypaque protocol followed by the Miltenyi CD34 isolation kit, and peripheral blood leukocytes were separated by the Haes-Steril method. Total RNA was extracted by the Trizol method, the High Capacity Kit was used to synthesise cDNA, and real-time PCR was performed using SybrGreen in ABIPrism 7500 equipment. The results of gene expression quantification are given as 2(-Delta Delta Ct). The JAK2 V617F mutation was detected by real-time allelic discrimination PCR assay. Peripheral blood mononuclear cells (PBMCs) were isolated by the Ficoll-hypaque protocol and cultured in the presence of apoptosis inducers. Results In CD34 cells, there was mRNA overexpression for fas, faim and c-flip in polycythaemia vera (PV), essential thrombocythaemia (ET) and primary myelofibrosis (PMF), as well as fasl in PMF, and dr4 levels were increased in ET. In leukocytes, fas, c-flip and trail levels were increased in PV, and dr5 expression was decreased in ET. There was an association between dr5 and fasl expression and JAK2V617F mutation. PBMCs from patients with PV, ET or PMF showed resistance to apoptosis inducers. Conclusions The results indicate deregulation of apoptosis gene expression, which may be associated with MPD pathogenesis leading to accumulation of myeloid cells in MPDs.
Resumo:
In the case of operated breast cancer (BC), prognostic markers help to determine if the patient needs additional treatment and predictive markers help the clinician to decide which treatment to use. Thus, a better knowledge of known predictive and prognostic markers and the identification of new markers, may improve the treatment of BC patients. The transforming growth factor-beta type II receptor (TGF-beta RII), a main receptor of transforming growth factor beta pathway, is a potential new prognostic marker. The aims of the present study were to investigate both the predictive and prognostic impact of TGF-beta RII in BC samples. TGF-beta RII protein expression was evaluated using immunohistochemistry on a tissue microarray containing 110 TNM stage III BC samples obtained prior to doxorubicin-based neoadjuvant chemotherapy (NAC). Our results demonstrate that TGF-beta RII did not predict the response to NAC. on the other hand, an association between TGF-beta RII-negative tumor and higher risk of metastasis to lungs and bones was verified. TGF-beta RII negativity was an independent prognostic factor for decreased disease-free and overall survival.
Resumo:
Coupled bone turnover is directed by the expression of receptor-activated NF-kappa B ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG). Proinflammatory cytokines, such as interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) induce RANKL expression in bone marrow stromal cells. Here, we report that IL-1 beta and TNF-alpha-induced RANKL requires p38 mitogen-activating protein kinase (MAPK) pathway activation for maximal expression. Real-time PCR was used to assess the p38 contribution toward IL-1 beta and TNF-alpha-induced RANKL mRNA expression. Steady-state RANKL RNA levels were increased approximately 17-fold by IL-1 beta treatment and subsequently reduced similar to 70%-90% when p38 MAPK was inhibited with SB203580. RANKL mRNA stability data indicated that p38 MAPK did not alter the rate of mRNA decay in IL-1 beta-induced cells. Using a RANKL-luciferase cell line receptor containing a 120-kB segment of the 5' flanking region of the RANKL gene, reporter expression was stimulated 4-5-fold by IL-1 beta or TNF-alpha treatment. IL-1 beta-induced RANKL reporter expression was completely blocked with specific p38 inhibitors as well as dominant negative mutant constructs of MAPK kinase-3 and -6. In addition, blocking p38 signaling in bone marrow stromal cells partially inhibited IL-1 beta and TNF-alpha-induced osteoclastogenesis in vitro. Results from these studies indicate that p38 MAPK is a major signaling pathway involved in IL-1 beta and TNF-alpha-induced RANKL expression in bone marrow stromal cells.
Resumo:
Purpose: To evaluate the biomechanical fixation, bone-to-implant contact (BIC), and bone morphology of screw-type root-form implants with healing chambers with as-machined or dual acid-etched (DAE) surfaces in a canine model. Materials and Methods: The animal model included the placement of machined (n = 24) and DAE (n = 24) implants along the proximal tibiae of six mongrel dogs, which remained in place for 2 or 4 weeks. Following euthanasia, half of the specimens were subjected to biomechanical testing (torque to interface failure) and the other half were processed for histomorphologic and histomorphometric (%BIC) assessments. Statistical analyses were performed by one-way analysis of variance at the 95% confidence level and the Tukey post hoc test for multiple comparisons. Results: At 4 weeks, the DAE surface presented significantly higher mean values for torque to interface failure overall. A significant increase in %BIC values occurred for both groups over time. For both groups, bone formation through the classic appositional healing pathway was observed in regions where intimate contact between the implant and the osteotomy walls occurred immediately after implantation. Where contact-free spaces existed after implantation (healing chambers), an intramembranous-like healing mode with newly formed woven bone prevailed. Conclusions: In the present short-term evaluation, no differences were observed in BIC between groups; however, an increase in biomechanical fixation was seen from 2 to 4 weeks with the DAE surface. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:75-82
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)