985 resultados para body fatness


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pattern of body fat distribution known as "centralized", and characterized by a predominance of subcutaneous fat on the trunk and a "pot belly", has been associated with an increased risk of chronic disease. These patterns of fat distribution, as well as the lifestyle habit variables associated with adult fatness and chronic morbidity clearly begin to develop during childhood, indicating the need for intervention and primary prevention of obesity, particularly the centralized form, during childhood or adolescence. The purpose of this study was to determine whether regular aerobic exercise could beneficially alter the distribution of body fat in 8 and 9 year old children. One hundred and eighty-eight participants were randomized into either a regular aerobic exercise treatment group or a standard physical education program control group. A variety of aerobic activities was used for intervention 5 days per week during physical education class for a period of 12 weeks. Fat distribution was measured by a number of the most commonly used indices, including ratios of body circumferences and skinfolds and indices derived from a principal components analysis. Change over time in average pulse rate was used to determine if intervention actually occurred. Approximately 10% of the students were remeasured, allowing the calculation of intra- and interexaminer measurement reliability estimates for all indices.^ This study group was comparable to the U.S. population, though the study children were slightly larger for certain measures. No effect of the exercise intervention was found. The most likely explanation for this was inadequacy of the intervention, as indicated by the lack of any change in average pulse rate with treatment. The results of the measurement reliability analysis are reported and indicate that body circumference ratios are more precise than skinfold ratios, particularly when multiple observers are used. Reliability estimates for the principal component indices were also high.^ It remains unclear whether the distribution of body fat can be altered with exercise. It is likely that this issue will remain undecided until one highly reliable, valid, and sensitive measure of fat distribution can be found. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. Most studies have described how the weight loss is when different treatments are compared (1-3), while others have also compared the weight loss by sex (4), or have taken into account psychosocial (5) and lifestyle (6, 7) variables. However, no studies have examined the interaction of different variables and the importance of them in the weight loss. Objective. Create a model to discriminate the range of weight loss, determining the importance of each variable. Methods. 89 overweight people (BMI: 25-29.9 kg?m-2), aged from 18 to 50 years, participated in the study. Four types of treatments were randomly assigned: strength training (S), endurance training (E), strength and endurance training (SE), and control group (C). All participants followed a 25% calorie restriction diet. Two multivariate discriminant models including the variables age, sex, height, daily energy expenditure (EE), type of treatment (T), caloric restriction (CR), initial body weight (BW), initial fat mass (FM), initial muscle mass (MM) and initial bone mineral density (BMD) were performed having into account two groups: the first and fourth quartile of the % of weight loss in the first model; the groups above and below the mean of the % of weight loss in the second model. The discriminant models were built using the inclusion method in SPSS allowing us to find a function that could predict the body weight loss range that an overweight person could achieve in a 6 months weight loss intervention.Results. The first discriminant analysis predicted that a combination of the studied variables would discriminate between the two ranges of body weight loss with 81.4% of correct classification. The discriminant function obtained was (Wilks? Lambda=0.475, p=0.003): Discriminant score=-18.266-(0.060xage)- (1.282xsex[0=female;1=male])+(14.701xheight)+(0.002xEE)- (0.006xT[1=S;2=E;3=SE;4=C])-(0.047xCR)- (0.558xBW)+(0.475xFM)+(0.398xMM)+(3.499xBMD) The second discriminant model obtained would discriminate between the two groups of body weight loss with 74.4% of correct classification. The discriminant function obtained was (Wilks? Lambda=0.725, p=0.005): Discriminant score=-5.021-(0.052xage)- (0.543xsex[0=female;1=male])+(3.530xheight)+(0.001xEE)- (0.493xT[1=S;2=E;3=SE;4=C])+(0.003xCR)- (0.365xBW)+(0.368xFM)+(0.296xMM)+(4.034xBMD) Conclusion. The first developed model could predict the percentage of weight loss in the following way: if the discriminant score is close to 1.051, the range of weight loss will be from 7.44 to -4.64% and if it is close to - 1.003, the range will be from -11.03 to -25,00% of the initial body weight. With the second model if the discriminant score is close to 0.623 the body weight loss will be above -7.93% and if it is close to -0.595 will be below - 7.93% of the initial body weight. References. 1. Brochu M, et al. Resistance training does not contribute to improving the metabolic profile after a 6-month weight loss program in overweight and obese postmenopausal women. J Clin Endocrinol Metab. 2009 Sep;94(9):3226-33. 2. Del Corral P, et al. Effect of dietary adherence with or without exercise on weight loss: a mechanistic approach to a global problem. J Clin Endocrinol Metab. 2009 May;94(5):1602-7. 3. Larson-Meyer DE, et al. Caloric Restriction with or without Exercise: The Fitness vs. Fatness Debate. Med Sci Sports Exerc. 2010;42(1):152-9. 4. Hagan RD, et al. The effects of aerobic conditioning and/or caloric restriction in overweight men and women. Medicine & Science in Sports & Exercise. 1986;18(1):87-94. 5. Teixeira PJ, et al. Mediators of weight loss and weight loss maintenance in middle-aged women. Obesity (Silver Spring). 2010 Apr;18(4):725-35. 6. Bautista-Castano I, et al. Variables predictive of adherence to diet and physical activity recommendations in the treatment of obesity and overweight, in a group of Spanish subjects. Int J Obes Relat Metab Disord. 2004 May;28(5):697-705.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the development of fatness, as indexed by skinfold thickness, in healthy Caucasian children and adolescents residing in the same location in Canada in the 1960s and the 1990s. The data comes from two longitudinal studies, conducted approximately 30 years apart, of children aged 8-16 years. The first study (1964-1973) annually measured 207 males and 140 females. The second investigation (1991-1997) repeatedly measured 113 males and 115 females. Identical measurement tools and protocols were used for height, body mass, and skinfolds. Maturational age was estimated as a measure in years from age of peak height velocity. Males from the second investigation matured significantly (P < 0.05) earlier. Multilevel regression modeling was utilized to determine developmental curves for the individuals within the two populations. When differences in height, body mass, and maturity were controlled, skinfold thicknesses of the males and females in the second study were significantly greater (P < 0.05) than age- and sex-matched peers in the first study. This was not seen in models of the BMI. The results suggest that when maturity and size were controlled, the fatness of children and adolescents increased over 30 years. (C) 2002 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In paediatric clinical practice treatment is often adjusted in relation to body size, for example the calculation of pharmacological and dialysis dosages. In addition to use of body weight, for some purposes total body water (TBW) and surface area are estimated from anthropometry using equations developed several decades previously. Whether such equations remain valid in contemporary populations is not known. Methods: Total body water was measured using deuterium dilution in 672 subjects (265 infants aged < 1 year; 407 children and adolescents aged 1-19 years) during the period 1990-2003. TBW was predicted (a) using published equations, and (b) directly from data on age, sex, weight, and height. Results: Previously published equations, based on data obtained before 1970, significantly overestimated TBW, with average biases ranging from 4% to 11%. For all equations, the overestimation of TBW was greatest in infancy. New equations were generated. The best equation, incorporating log weight, log height, age, and sex, had a standard error of the estimate of 7.8%. Conclusions: Secular trends in the nutritional status of infants and children are altering the relation between age or weight and TBW. Equations developed in previous decades significantly overestimate TBW in all age groups, especially infancy; however, the relation between TBW and weight may continue to change. This scenario is predicted to apply more generally to many aspects of paediatric clinical practice in which dosages are calculated on the basis of anthropometric data collected in previous decades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Obesity is a disease with excess body fat where health is adversely affected. Therefore it is prudent to make the diagnosis of obesity based on the measure of percentage body fat. Body composition of a group of Australian children of Sri Lankan origin were studied to evaluate the applicability of some bedside techniques in the measurement of percentage body fat. Methods: Height (H) and weight (W) was measured and BMI (W/H-2) calculated. Bioelectrical impedance analysis (BIA) was measured using tetra polar technique with an 800 mu A current of 50 Hz frequency. Total body water was used as a reference method and was determined by deuterium dilution and fat free mass and hence fat mass (FM) derived using age and gender specific constants. Percentage FM was estimated using four predictive equations, which used BIA and anthropometric measurements. Results: Twenty-seven boys and 15 girls were studied with mean ages being 9.1 years and 9.6 years, respectively. Girls had a significantly higher FM compared to boys. The mean percentage FM of boys (22.9 +/- 8.7%) was higher than the limit for obesity and for girls (29.0 +/- 6.0%) it was just below the cut-off. BMI was comparatively low. All but BIA equation in boys under estimated the percentage FM. The impedance index and weight showed a strong association with total body water (r(2)= 0.96, P < 0.001). Except for BIA in boys all other techniques under diagnosed obesity. Conclusions: Sri Lankan Australian children appear to have a high percentage of fat with a low BMI and some of the available indirect techniques are not helpful in the assessment of body composition. Therefore ethnic and/or population specific predictive equations have to be developed for the assessment of body composition, especially in a multicultural society using indirect methods such as BIA or anthropometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis examines the intersections of gay and bisexual identity with body size, or fatness. Gay and bisexual identity and fatness are marginalized social identities that seem to be incompatible (Bond, 2013). While a sense of collective identity with the gay and bisexual community has been shown to be a protective factor against internalized homonegativity in gay and bisexual men (Halpin & Allen, 2004), the degree to which this protective factor persists for fat people in an anti-fat environment like the gay and bisexual community (Wrench & Knapp, 2008) has not been explored. This intersection of identities and anti-fat culture seemed to suggest there might be a relationship between fatness and internalized homophobia. Fatness did not moderate the relationship between sense of belonging to the gay and bisexual community and internalized homonegativity, but a significant positive relationship was found between belongingness to the gay and bisexual community and body shame.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Body composition is affected by diseases, and affects responses to medical treatments, dosage of medicines, etc., while an abnormal body composition contributes to the causation of many chronic diseases. While we have reliable biochemical tests for certain nutritional parameters of body composition, such as iron or iodine status, and we have harnessed nuclear physics to estimate the body’s content of trace elements, the very basic quantification of body fat content and muscle mass remains highly problematic. Both body fat and muscle mass are vitally important, as they have opposing influences on chronic disease, but they have seldom been estimated as part of population health surveillance. Instead, most national surveys have merely reported BMI and waist, or sometimes the waist/hip ratio; these indices are convenient but do not have any specific biological meaning. Anthropometry offers a practical and inexpensive method for muscle and fat estimation in clinical and epidemiological settings; however, its use is imperfect due to many limitations, such as a shortage of reference data, misuse of terminology, unclear assumptions, and the absence of properly validated anthropometric equations. To date, anthropometric methods are not sensitive enough to detect muscle and fat loss. Aims: The aim of this thesis is to estimate Adipose/fat and muscle mass in health disease and during weight loss through; 1. evaluating and critiquing the literature, to identify the best-published prediction equations for adipose/fat and muscle mass estimation; 2. to derive and validate adipose tissue and muscle mass prediction equations; and 3.to evaluate the prediction equations along with anthropometric indices and the best equations retrieved from the literature in health, metabolic illness and during weight loss. Methods: a Systematic review using Cochrane Review method was used for reviewing muscle mass estimation papers that used MRI as the reference method. Fat mass estimation papers were critically reviewed. Mixed ethnic, age and body mass data that underwent whole body magnetic resonance imaging to quantify adipose tissue and muscle mass (dependent variable) and anthropometry (independent variable) were used in the derivation/validation analysis. Multiple regression and Bland-Altman plot were applied to evaluate the prediction equations. To determine how well the equations identify metabolic illness, English and Scottish health surveys were studied. Statistical analysis using multiple regression and binary logistic regression were applied to assess model fit and associations. Also, populations were divided into quintiles and relative risk was analysed. Finally, the prediction equations were evaluated by applying them to a pilot study of 10 subjects who underwent whole-body MRI, anthropometric measurements and muscle strength before and after weight loss to determine how well the equations identify adipose/fat mass and muscle mass change. Results: The estimation of fat mass has serious problems. Despite advances in technology and science, prediction equations for the estimation of fat mass depend on limited historical reference data and remain dependent upon assumptions that have not yet been properly validated for different population groups. Muscle mass does not have the same conceptual problems; however, its measurement is still problematic and reference data are scarce. The derivation and validation analysis in this thesis was satisfactory, compared to prediction equations in the literature they were similar or even better. Applying the prediction equations in metabolic illness and during weight loss presented an understanding on how well the equations identify metabolic illness showing significant associations with diabetes, hypertension, HbA1c and blood pressure. And moderate to high correlations with MRI-measured adipose tissue and muscle mass before and after weight loss. Conclusion: Adipose tissue mass and to an extent muscle mass can now be estimated for many purposes as population or groups means. However, these equations must not be used for assessing fatness and categorising individuals. Further exploration in different populations and health surveys would be valuable.