962 resultados para body condition


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hip height, body condition, subcutaneous fat, eye muscle area, percentage Bos taurus, fetal age and diet digestibility data were collected at 17 372 assessments on 2181 Brahman and tropical composite (average 28% Brahman) female cattle aged between 0.5 and 7.5 years of age at five sites across Queensland. The study validated the subtraction of previously published estimates of gravid uterine weight to correct liveweight to the non-pregnant status. Hip height and liveweight were linearly related (Brahman: P<0.001, R-2 = 58%; tropical composite P<0.001, R-2 = 67%). Liveweight varied by 12-14% per body condition score (5-point scale) as cows differed from moderate condition (P<0.01). Parallel effects were also found due to subcutaneous rump fat depth and eye muscle area, which were highly correlated with each other and body condition score (r = 0.7-0.8). Liveweight differed from average by 1.65-1.66% per mm of rump fat depth and 0.71-0.76% per cm(2) of eye muscle area (P<0.01). Estimated dry matter digestibility of pasture consumed had no consistent effect in predicting liveweight and was therefore excluded from final models. A method developed to estimate full liveweight of post-weaning age female beef cattle from the other measures taken predicted liveweight to within 10 and 23% of that recorded for 65 and 95% of cases, respectively. For a 95% chance of predicted group average liveweight (body condition score used) being within 5, 4, 3, 2 and 1% of actual group average liveweight required 23, 36, 62, 137 and 521 females, respectively, if precision and accuracy of measurements matches that used in the research. Non-pregnant Bos taurus female cattle were calculated to be 10-40% heavier than Brahmans at the same hip height and body condition, indicating a substantial conformational difference. The liveweight prediction method was applied to a validation population of 83 unrelated groups of cattle weighed in extensive commercial situations on 119 days over 18 months (20 917 assessments). Liveweight prediction in the validation population exceeded average recorded liveweight for weigh groups by an average of 19 kg (similar to 6%) demonstrating the difficulty of achieving accurate and precise animal measurements under extensive commercial grazing conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

L’évaluation de la condition corporelle des carcasses des bélugas du Saint-Laurent contribue au diagnostic de cause de mortalité du pathologiste. La méthode actuelle repose sur une évaluation visuelle subjective. Notre projet visait à chercher un outil objectif d’évaluation de la condition corporelle. L’indice de masse mise à l’échelle (M̂ i) est objectif puisqu’il est calculé à partir de la masse et de la taille de chaque individu. M̂ i doit être calculé avec des constantes différentes pour les bélugas mesurant plus ou moins de 290 cm. Il produit des résultats en accord avec l’évaluation visuelle. Comme il est parfois logistiquement impossible de peser un béluga, nous avons évalué des indices basés sur d’autres mesures morphométriques. Les indices basés sur la circonférence à hauteur de l’anus pour les bélugas de moins de 290 cm et la circonférence maximale pour ceux de plus de 290 cm représentent des indices de condition corporelle alternatifs intéressants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mass and length growth models were determined for male (n = 69) and female (n = 163) Australian fur seals (Arctocephalus pusillus doriferus) collected at a breeding colony on Seal Rocks (38˚31′S, 145˚06′E), Bass Strait, in south-east Australia, between February and November during 1970–72. Growth was best described by the logistic model in males and the von Bertalanffy model in females. Asymptotic mass and length were 229 kg and 221 cm for males, and 85 kg and 163 cm for females. In all, 95% of asymptotic mass and length were attained by 11 years and 11 years, respectively, in males compared with 9 years and 5 years, respectively, in females. Males grew in length faster than females and experienced a growth spurt in mass coinciding with the onset of puberty (4–5 years). The onset of puberty in females occurs when approximately 86% of asymptotic length is attained. The rate of growth and sexual development in Australian fur seals is similar to (if not faster than) that in the conspecific Cape fur seal (A. p. pusillus), which inhabits the nutrient-rich Benguela current. This suggests that the low marine productivity of Bass Strait may not be cause of the slow rate of recovery of the Australian fur seal population following the severe over-exploitation of the commercial sealing era. Sternal blubber depth was positively correlated in adult animals with a body condition index derived from the residuals of the mass–length relationship (males: r2 = 0.38, n = 19, P < 0.001; females: r2 = 0.22, n = 92, P < 0.001), confirming the validity of using such indices on otariids. Sternal blubber depth varied significantly with season in adult animals. In males it was lowest in winter and increased during spring prior to the breeding season (r2 = 0.39, n = 19, P < 0.03) whereas in females it was greatest during winter (r2 = 0.05, n = 122, P< 0.05).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We measured the daily energy expenditure of free-living red foxes Vulpes vulpes occupying a temperate region of New South Wales, Australia. Field metabolic rate (FMR) and body water turnover were estimated using doubly labelled water. In autumn, male body mass ranged from 5 to 6.1 kg (mean 5.6 kg) and their FMRs averaged 2328 kJ/day. Female body mass in autumn ranged from 4.9 to 6.6 kg (mean 5.4 kg) and their FMRs averaged 1681 kJ/day. Body water influx for males and females was 314 and 251 mL/day, respectively. Body composition of each fox was analysed after the field measurements and revealed a significant correlation between body water content, as estimated from tritiated water space, and body lipids (r2 = 0.72). This supports the use of body water determination as a potentially non-destructive method to gauge body condition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The relative contribution of genetic and environmental factors in determining variation in life-history traits is of central interest to evolutionary biologists, but the physiological mechanisms underlying these traits are still poorly understood. Here we experimentally demonstrate opposing effects of nutritional stress on immune function, endocrine physiology, parental care, and reproduction between red and black head-color morphs of the Gouldian finch (Erythrura gouldiae). Although the body condition of black morphs was largely unaffected by diet manipulation, red birds were highly sensitive to dietary changes, exhibiting considerable within-individual changes in condition and immune function. Consequently, nutritionally stressed red birds delayed breeding, produced smaller broods, and reared fewer and lower-quality foster offspring than black morphs. Differences in offspring quality were largely due to morph-specific differences in parental effort: red morphs reduced parental provisioning, whereas black morphs adaptively elevated their provisioning effort to meet the increased nutritional demands of their foster brood. Nutritionally stressed genetic morphs also exhibited divergent glucocorticoid responses. Black morphs showed reduced corticosterone-binding globulin (CBG) concentrations and increased levels of free corticosterone, whereas red morphs exhibited reduced free corticosterone levels and elevated CBG concentrations. These opposing glucocorticoid responses highlight intrinsic differences in endocrine sensitivities and plasticity between genetic morphs, which may underlie the morph-specific differences in condition, behavior, and reproduction and thus ultimately contribute to the evolution and maintenance of color polymorphism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Habitat loss, fragmentation and degradation are drivers of major declines in biodiversity and species extinctions. The actual causes of species population declines following habitat change are more difficult to discern and there is typically high covariation among the measures used to infer the causes of decline. The causes of decline may act directly on individual fitness and survival, or through disruption of population processes. We examined the relationships among configuration, extent and status of native vegetation and three commonly used indicators of individual body condition and chronic stress (haemoglobin level, haematocrit, residual body mass condition index) in 13 species of woodland-dependent birds in south-eastern Australia. We also examined two measures of changes to population processes (sex ratio and individual homozygosity) in ten species and alleic richness in five species. We found little support for relationships between site or landscape characteristics and individual or population response variables, notwithstanding that our simulations showed we had sufficient power to detect relatively small effects. We discuss possible causes of the absence of detectable habitat effects in this system and the implications for the usefulness of individual body condition and easily measured haematological indices as indicators of the response of avian populations to habitat change. © 2012 The Authors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Early developmental conditions have major implications for an individual's fitness. In species where offspring are born simultaneously, the level of sibling competition for food access is intense. In birds, high sibling competition may subject nestlings to decreased growth rate as a result of limited food and increased levels of oxidative stress through high metabolic activity induced by begging behaviors. We manipulated the level of sibling competition in a natural population of great tits and assessed the consequences for nestling body condition and resistance to oxidative stress. In a full factorial design, we both augmented brood size to increase sibling competition and supplemented the male parents with physiological doses of carotenoids thereby doubling the natural carotenoid intake, aiming at increasing the males' investment in current reproduction and thereby decreasing sibling competition. Nestling body mass was reduced by the brood enlargement and enhanced by the carotenoid supplementation of fathers. Nestling resistance to oxidative stress, measured as total antioxidant defenses in whole blood, was not influenced by the treatments. Because nestlings experience high metabolic activities, an absence of an effect of sibling competition on free radicals production seems unlikely. Nestling body mass decreased and resistance to oxidative stress tended to increase with initial brood size, and hence these correlational effects suggest a trade-off between morphological growth and development of the antioxidant system. However, the result of the experimental treatment did not support this trade-off hypothesis. Alternatively, it suggests that nestling developed compensatory mechanisms that were not detected by our antioxidant capacity measure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two experiments were conducted to evaluate the effects of body condition scores of beef calves on performance efficiency and carcass characteristics. In Experiment 1, 111 steer calves were stratified by breed and condition score (CS) and randomly allotted to 14 pens. The study was analyzed as a 2 x 3 factorial design, with two breeds (Angus and Simmental) and three initial CS (4.4, 5.1, and 5.6). In Experiment 2, 76 steer calves were allotted to six pens by CS. The resultant pens averaged 3.9, 4.5, 4.7, 5.0, 5.1, and 5.6 in CS. Calves in both studies were fed a corn-based finishing diet formulated to 13.5% crude protein. All calves were implanted with Synovex- SÒ initially and reimplanted with Revalor-SÒ. In Experiment 1, 29-day dry matter intake (lb/day) increased with CS (17.9, 18.1, and 19.1 for 4.4, 5.1, and 5.6, respectively; p < .04). Daily gain (29 days) tended to decrease with increasing CS (4.19, 3.71, and 3.26; p < .13). Days on feed decreased with increasing CS (185, 180, and 178d; p < .07). In Experiment 2, daily gains also increased with decreasing initial CS for the first 114 days (p < .05) and tended to increase overall (p < .20). In Experiment 1, calves with lower initial CS had less external fat at slaughter (.48, .53, and .61 in. for CS 4.4, 5.1, and 5.6, respectively; p < .05). This effect was also noted at slaughter (p < .10), as well as at 57 days (p < .06) and at 148 days (p < .06) as measured by real-time ultrasound. Measurements of intramuscular fat and marbling were not different in either study. These data suggest that CS of feeder calves may be a useful tool for adjusting energy requirements of calves based on body condition. Also, feeder cattle may be sorted into outcome or management groups earlier than currently practiced using body condition and/or real-time ultrasound.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One of the reasons for animals not to grow as fast as they potentially could is that fast growth has been shown to be associated with reduced lifespan. However, we are still lacking a clear description of the reality of growth-dependent modulation of ageing mechanisms in wild animals. Using the particular growth trajectory of small king penguin chicks naturally exhibiting higher-than-normal growth rate to compensate for the winter break, we tested whether oxidative stress and telomere shortening are related to growth trajectories. Plasma antioxidant defences, oxidative damage levels and telomere length were measured at the beginning and at the end of the post-winter growth period in three groups of chicks (small chicks, which either passed away or survived the growth period, and large chicks). Small chicks that died early during the growth period had the highest level of oxidative damage and the shortest telomere lengths prior to death. Here, we show that small chicks that grew faster did it at the detriment of body maintenance mechanisms as shown by (i) higher oxidative damage and (ii) accelerated telomere loss. Our study provides the first evidence for a mechanistic link between growth and ageing rates under natural conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to examine the plasma concentrations and prevalence of polychlorinated biphenyls (PCBs) and hydroxylated PCB-metabolites (OH-PCBs) in polar bear (Ursus maritimus) mothers (n = 26) and their 4 months old cubs-of-the-year (n = 38) from Svalbard to gain insight into the mother-cub transfer, biotransformation and to evaluate the health risk associated with the exposure to these contaminants. As samplings were performed in 1997/1998 and 2008, we further investigated the differences in levels and pattern of PCBs between the two sampling years. The plasma concentrations of Sum(21)PCBs (1997/1998: 5710 ± 3090 ng/g lipid weight [lw], 2008: 2560±1500 ng/g lw) and Sum(6)OH-PCBs (1997/1998: 228 ± 60 ng/g wet weight [ww], 2008: 80 ± 38 ng/g ww) in mothers were significantly lower in 2008 compared to in 1997/1998. In cubs, the plasma concentrations of Sum(21)PCBs (1997/1998: 14680 ± 5350 ng/g lw, 2008: 6070 ± 2590 ng/g lw) and Sum(6)OH-PCBs (1997/1998: 98 ± 23 ng/g ww, 2008: 49 ± 21 ng/g ww) were also significantly lower in 2008 than in 1997/1998. Sum(21)PCBs in cubs was 2.7 ± 0.7 times higher than in their mothers. This is due to a significant maternal transfer of these contaminants. In contrast, Sum(6)OH-PCBs in cubs were approximately 0.53 ± 0.16 times the concentration in their mothers. This indicates a lower maternal transfer of OH-PCBs compared to PCBs. The majority of the metabolite/precursor-ratios were lower in cubs compared to mothers. This may indicate that cubs have a lower endogenous capacity to biotransform PCBs to OH-PCBs than polar bear mothers. Exposure to PCBs and OH-PCBs is a potential health risk for polar bears, and the levels of PCBs and OH-PCBs in cubs from 2008 were still above levels associated with health effects in humans and wildlife.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Limited resources in the environment prevent individuals from simultaneously maximizing all life-history traits, resulting in trade-offs. In particular, the cost of reproduction is well known to negatively affect energy investment in growth and maintenance. Here, we investigated these trade-offs during contrasting periods of high versus low fish size and body condition (before/after 2008) in the Gulf of Lions. Female reproductive allocation and performance in anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) were examined based on morphometric historical data from the 1970s and from 2003 to 2015. Additionally, potential maternal effects on egg quantity and quality were examined in 2014/2015. After 2008, the gonadosomatic index increased for sardine and remained steady for anchovy, while a strong decline in mean length at first maturity indicated earlier maturation for both species. Regarding maternal effects, for both species egg quantity was positively linked to fish size but not to fish lipid reserves, while the egg quality was positively related to lipid reserves. Atresia prevalence and intensity were rather low regardless of fish condition and size. Finally, estimations of total annual numbers of eggs spawned indicated a sharp decrease for sardine since 2008 but a slight increase for anchovy during the last 5 years. This study revealed a biased allocation towards reproduction in small pelagic fish when confronted with a really low body condition. This highlights that fish can maintain high reproductive investment potentially at the cost of other traits which might explain the present disappearance of old and large individuals in the Gulf of Lions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The arid and semi-arid zones of Australia are characterized by highly variable and unpredictable environmental conditions which affect the provision of resources for flora and fauna. Environments which are highly unpredictable in terms of both resource access and distribution are likely to select for a variety of adaptive behavioral strategies, intrinsically linked to the physiological control of behavior. How unpredictable resource distribution has affected the coevolution of behavioral strategies and physiology has rarely been quantified, particularly not in Australian birds. We used a captive population of wild-derived zebra finches to test the relationships between behavioral strategies relating to food access and physiological responses to stress and body condition. We found that individuals which were in poorer body condition and had higher peak corticosterone levels entered baited feeders earlier in the trapping sequence of birds within the colony. We also found that individuals in poorer body condition fed in smaller social groups. Our data show that the foraging decisions which individuals make represent not only a trade-off between food access and risk of exposure, but their underlying physiological response to stress. Our data also suggest fundamental links between social networks and physiological parameters, which largely remain untested. These data demonstrate the fundamental importance of physiological mechanisms in controlling adaptive behavioral strategies and the dynamic interplay between physiological control of behavior and life-history evolution.