83 resultados para biopolímeros
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O emprego significativo de polímeros na sociedade moderna causou um grande desenvolvimento tecnológico em torno de sua produção a partir do petróleo. Contudo a limitação crescente de disponibilidade e as altas sucessivas do preço do petróleo têm estimulado, cada vez mais, novas pesquisas no desenvolvimento de biopolímeros provenientes de recursos renováveis. O biopolímero dextrana tem origem da conversão do substrato promovida pela enzima dextranasacarase que é secretada por micro-organismos principalmente pertencentes à família Lactobacillaceae. O objetivo desta pesquisa tem por meio do levantamento bibliográfico reunir conteúdos relacionados ao biopolímero dextrana, a enzima dextranasacarase, os micro-organismos produtores e suas aplicações industriais. Devido a algumas características da dextrana (Hidrofobicidade, estabilidade, pureza e habilidade de formar soluções claras e estáveis, entre outras), a mesma apresenta um grande leque de aplicações na indústria farmacêutica, alimentícia, petroquímica e química. As pesquisas que vinculam a dextrana às aplicações industriais estão em plena expansão e sabendo que a produção de dextrana é proveniente de recursos naturais renováveis e de origem microbiana, o momento atual é favorável para um aumento de sua produção, causando a valorização deste biopolímero no mercado nacional e internacional
Resumo:
Atualmente há considerável interesse em polissacarídeos obtidos pela ação de microrganismos. Estes polissacarídeos, conhecidos como biopolímeros, são obtidos por processos fermentativos. Possuem capacidade de formar soluções viscosas e géis em meio aquoso, mesmo quando aplicados em baixas concentrações (MOREIRA, et al., 2003). A dextrana se caracteriza por ser um dos biopolímeros mais comercializados em escala industrial, representando uma fatia significativa desse mercado de polissacarídeos microbianos. A reação de síntese desse biopolímero é catalisada pela enzima dextranasacarase, a qual converte a sacarose em frutose e dextrana. Essa enzima, por sua vez, é produzida extracelularmente por diversas espécies do gênero Leuconostoc, Lactobacillus e Streptococcus. (MONCHOIS, WILLEMOT et. al, 1999). 47 Os biopolímeros microbianos podem ser produzidos pelo processo convencional cultivando o microrganismo em meio líquido com substrato, em condições ideais de temperatura, rotação e pH. Outro tipo de produção em meio líquido é por via enzimática, ou seja, utilizando enzimas purificadas . As enzimas são primeiramente produzidas e purificadas e depois utilizadas para síntese do polímero em meio contendo substrato. O processo via enzimática é o utilizado na produção de dextrana, uma vez que este apresenta um rendimento ótimo e um potencial econômico enorme.(MOREIRA, et al. 2003). ...(Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Los polímeros compostables suponen en torno al 30% de los bioplásticos destinados a envasado, siendo a su vez esta aplicación el principal destino de la producción de este tipo de materiales que, en el año 2013, superó 1,6 millones de toneladas. La presente tesis aborda la biodegradación de los residuos de envases domésticos compostables en medio aerobio para dos tipos de formato y materiales, envase rígido de PLA (Clase I) y dos tipos de bolsas de PBAT+PLA (Clases II y III). Sobre esta materia se han realizado diversos estudios en escala de laboratorio pero para otro tipo de envases y biopolímeros y bajo condiciones controladas del compost con alguna proyección particularizada en plantas. La presente tesis da un paso más e investiga el comportamiento real de los envases plásticos compostables en la práctica del compostaje en tecnologías de pila y túnel, tanto a escala piloto como industrial, dentro del procedimiento y con las condiciones ambientales de instalaciones concretas. Para ello, con el método seguido, se han analizado los requisitos básicos que debe cumplir un envase compostable, según la norma UNE – EN 13432, evaluando el porcentaje de biodegradación de los envases objeto de estudio, en función de la pérdida de peso seco tras el proceso de compostaje, y la calidad del compost obtenido, mediante análisis físico-químico y de fitotoxicidad para comprobar que los materiales de estudio no aportan toxicidad. En cuanto a los niveles de biodegrabilidad, los resultados permiten concluir que los envases de Clase I se compostan adecuadamente en ambas tecnologías y que no requieren de unas condiciones de proceso muy exigentes para alcanzar niveles de biodegradación del 100%. En relación a los envases de Clase II, se puede asumir que se trata de un material que se composta adecuadamente en pila y túnel industrial pero que requiere de condiciones exigentes para alcanzar niveles de biodegradación del 100% al afectarle de forma clara la ubicación de las muestras en la masa a compostar, especialmente en el caso de la tecnología de túnel. Mientras el 90% de las muestras alcanza el 100% de biodegradación en pila industrial, tan sólo el 50% lo consigue en la tecnología de túnel a la misma escala. En cuanto a los envases de Clase III, se puede afirmar que es un material que se composta adecuadamente en túnel industrial pero que requiere de condiciones de cierta exigencia para alcanzar niveles de biodegradación del 100% al poderle afectar la ubicación de las muestras en la masa a compostar. El 75% de las muestras ensayadas en túnel a escala industrial alcanzan el 100% de biodegradación y, aunque no se ha ensayado este tipo de envase en la tecnología de pila al no disponer de muestras, cabe pensar que los resultados de biodegrabilidad que hubiera podido alcanzar habrían sido, como mínimo, los obtenidos para los envases de Clase II, al tratarse de materiales muy similares en composición. Por último, se concluye que la tecnología de pila es más adecuada para conseguir niveles de biodegradación superiores en los envases tipo bolsa de PBAT+PLA. Los resultados obtenidos permiten también sacar en conclusión que, en el diseño de instalaciones de compostaje para el tratamiento de la fracción orgánica recogida selectivamente, sería conveniente realizar una recirculación del rechazo del afino del material compostado para aumentar la probabilidad de someter este tipo de materiales a las condiciones ambientales adecuadas. Si además se realiza un triturado del residuo a la entrada del proceso, también se aumentaría la superficie específica a entrar en contacto con la masa de materia orgánica y por tanto se favorecerían las condiciones de biodegradación. En cuanto a la calidad del compost obtenido en los ensayos, los resultados de los análisis físico – químicos y de fitotoxicidad revelan que los niveles de concentración de microorganismo patógenos y de metales pesados superan, en la práctica totalidad de las muestras, los niveles máximos permitidos en la legislación vigente aplicable a productos fertilizantes elaborados con residuos. Mediante el análisis de la composición de los envases ensayados se constata que la causa de esta contaminación reside en la materia orgánica utilizada para compostar en los ensayos, procedente del residuo de origen doméstico de la denominada “fracción resto”. Esta conclusión confirma la necesidad de realizar una recogida selectiva de la fracción orgánica en origen, existiendo estudios que evidencian la mejora de la calidad del residuo recogido en la denominada “fracción orgánica recogida selectivamente” (FORM). Compostable polymers are approximately 30% of bioplastics used for packaging, being this application, at same time, the main destination for the production of such materials exceeded 1.6 million tonnes in 2013. This thesis deals with the biodegradation of household packaging waste compostable in aerobic medium for two format types and materials, rigid container made of PLA (Class I) and two types of bags made of PBAT + PLA (Classes II and III). There are several studies developed about this issue at laboratory scale but for other kinds of packaging and biopolymers and under composting controlled conditions with some specifically plants projection. This thesis goes one step further and researches the real behaviour of compostable plastic packaging in the composting practice in pile and tunnel technologies, both at pilot and industrial scale, within the procedure and environmental conditions of concrete devices. Therefore, with a followed method, basic requirements fulfilment for compostable packaging have been analysed according to UNE-EN 13432 standard. It has been assessed the biodegradability percentage of the packaging studied, based on loss dry weight after the composting process, and the quality of the compost obtained, based on physical-chemical analysis to check no toxicity provided by the studied materials. Regarding biodegradability levels, results allow to conclude that Class I packaging are composted properly in both technologies and do not require high exigent process conditions for achieving 100% biodegradability levels. Related to Class II packaging, it can be assumed that it is a material that composts properly in pile and tunnel at industrial scale but requires exigent conditions for achieving 100% biodegradability levels for being clearly affected by sample location in the composting mass, especially in tunnel technology case. While 90% of the samples reach 100% of biodegradation in pile at industrial scale, only 50% achieve it in tunnel technology at the same scale. Regarding Class III packaging, it can be said that it is a material properly composted in tunnel at industrial scale but requires certain exigent conditions for reaching 100% biodegradation levels for being possibly affected by sample location in the composting mass. The 75% of the samples tested in tunnel at industrial scale reaches 100% biodegradation. Although this kind of packaging has not been tested on pile technology due to unavailability of samples, it is judged that biodegradability results that could be reached would have been, at least, the same obtained for Class II packaging, as they are very similar materials in composition. Finally, it is concluded that pile technology is more suitable for achieving highest biodegradation levels in bag packaging type of PBAT+PLA. Additionally, the obtained results conclude that, in the designing of composting devices for treatment of organic fraction selectively collected, it would be recommended a recirculation of the refining refuse of composted material in order to increase the probability of such materials to expose to proper environmental conditions. If the waste is grinded before entering the process, the specific surface in contact with organic material would also be increased and therefore biodegradation conditions would be more favourable. Regarding quality of the compost obtained in the tests, physical-chemical and phytotoxicity analysis results reveal that pathogen microorganism and heavy metals concentrations exceed, in most of the samples, the maximum allowed levels by current legislation for fertilizers obtained from wastes. Composition analysis of tested packaging verifies that the reason for this contamination is the organic material used for composting tests, comes from the household waste called “rest fraction”. This conclusion confirms the need of a selective collection of organic fraction in the origin, as existing studies show the quality improvement of the waste collected in the so-called “organic fraction selectively collected” (FORM).
Resumo:
A caracterização dielétrica de um material pode ser usada como uma técnica não destrutiva para avaliar e monitorar sua qualidade, bem como no entendimento da relação estrutura-propriedade de um material, através de suas propriedades dielétricas em função da frequência, temperatura, composição química do material, dentre outros. Na literatura há escassez de trabalhos e dados de caracterização dielétrica de filmes a base de biopolímeros. Diante desse contexto, o objetivo deste trabalho foi o desenvolvimento e a construção de uma instrumentação alternativa a equipamentos disponíveis no mercado, como analisadores de rede e de impedância, que pudesse ser utilizada para a caracterização dielétrica de filmes biodegradáveis a base de gelatina. Foi utilizado o método de placas paralelas na determinação da parte real da permissividade conhecida como permissividade relativa ou constante dielétrica (ε\'). O circuito utilizado para a instrumentação foi um oscilador astável com funcionamento baseado no amplificador operacional (741) chaveado pela carga de um capacitor de placas paralelas cujo dielétrico foi uma amostra de filme biodegradável. A partir dos valores da frequência de oscilação e geometria do capacitor, foi possível calcular a capacitância de cada amostra e, consequentemente obter os valores da permissividade relativa do filme, usando relações básicas bem estabelecidas. Os filmes de gelatina foram produzidos pela técnica de casting sendo utilizados como plastificantes o glicerol (G), o sorbitol (S) e suas misturas, na proporção (G:S) de 30:70, 50:50 e 70:30. Os filmes foram caracterizados quanto à umidade e cristalinidade. A permissividade relativa (ε\') dos filmes, determinada a temperatura ambiente, foi avaliada em função da frequência (5 a 50 kHz), tempo de armazenamento, do teor de umidade e tipo de plastificante. A instrumentação projetada e construída foi capaz de medir com precisão a permissividade relativa das amostras, sendo que essa propriedade diminuiu com o aumento da frequência para todos os filmes. Mantendo-se a frequência constante, não houve variação de ε\' para os filmes de gelatina, independente do plastificante, ao longo de um mês de armazenamento a 24 ± 3 °C. O efeito da umidade foi observado em frequências menores que 25 kHz, sendo que quanto maior o teor de umidade maior a permissividade relativa. O efeito do tipo de plastificante na permissividade relativa dos filmes foi observado a baixas frequências (5 kHz) e filmes plastificados com sorbitol apresentaram maiores valores de ε\'. Os filmes plastificados com maior teor de umidade apresentaram menor cristalinidade, portanto maior mobilidade molecular e consequentemente maior a permissividade relativa.