872 resultados para biomedical informatics
Resumo:
Presentation of research projects
Resumo:
Consider a person searching electronic health records, a search for the term ‘cracked skull’ should return documents that contain the term ‘cranium fracture’. A information retrieval systems is required that matches concepts, not just keywords. Further more, determining relevance of a query to a document requires inference – its not simply matching concepts. For example a document containing ‘dialysis machine’ should align with a query for ‘kidney disease’. Collectively we describe this problem as the ‘semantic gap’ – the difference between the raw medical data and the way a human interprets it. This paper presents an approach to semantic search of health records by combining two previous approaches: an ontological approach using the SNOMED CT medical ontology; and a distributional approach using semantic space vector space models. Our approach will be applied to a specific problem in health informatics: the matching of electronic patient records to clinical trials.
Resumo:
Stereolithography is a solid freeform technique (SFF) that was introduced in the late 1980s. Although many other techniques have been developed since then, stereolithography remains one of the most powerful and versatile of all SFF techniques. It has the highest fabrication accuracy and an increasing number of materials that can be processed is becoming available. In this paper we discuss the characteristic features of the stereolithography technique and compare it to other SFF techniques. The biomedical applications of stereolithography are reviewed, as well as the biodegradable resin materials that have been developed for use with stereolithography. Finally, an overview of the application of stereolithography in preparing porous structures for tissue engineering is given.
Resumo:
The increasing ubiquity of digital technology, internet ser-vices and social media in our everyday lives allows for a seamless transitioning between the visible and the invisible infrastructure of cities: road systems, building complexes, information and communication technology, and people networks create a buzzing environment that is alive and exciting. Driven by curiosity, initiative and interdiscipli-nary exchange, the Urban Informatics Research Lab at Queensland University of Technology (QUT), Brisbane, Australia, is an emerging cluster of people interested in research and development at the intersection of people, place and technology with a focus on cities, locative media and mobile technology. This paper seeks to define, for the first time, what we mean by ‘urban informatics’ and outline its significance as a field of study today. It describes the relevant background and trends in each of the areas of peo-ple, place and technology, and highlights the relevance of urban informatics to the concerns and evolving challenges of CSCW. We then position our work in academia juxta-posed with related research concentrations and labels, fol-lowed by a discussion of disciplinary influences. The paper concludes with an exposé of the three current research themes of the lab around augmented urban spaces, urban narratives, and environmental sustainability in order to illustrate specific cases and methods, and to draw out distinctions that our affiliation with the Creative Industries Faculty affords.
Resumo:
Web applications such as blogs, wikis, video and photo sharing sites, and social networking systems have been termed ‘Web 2.0’ to highlight an arguably more open, collaborative, personalisable, and therefore more participatory internet experience than what had previously been possible. Giving rise to a culture of participation, an increasing number of these social applications are now available on mobile phones where they take advantage of device-specific features such as sensors, location and context awareness. This international volume of book chapters will make a contribution towards exploring and better understanding the opportunities and challenges provided by tools, interfaces, methods and practices of social and mobile technology that enable participation and engagement. It brings together an international group of academics and practitioners from a diverse range of disciplines such as computing and engineering, social sciences, digital media and human-computer interaction to critically examine a range of applications of social and mobile technology, such as social networking, mobile interaction, wikis, twitter, blogging, virtual worlds, shared displays and urban sceens, and their impact to foster community activism, civic engagement and cultural citizenship.
Resumo:
For many decades correlation and power spectrum have been primary tools for digital signal processing applications in the biomedical area. The information contained in the power spectrum is essentially that of the autocorrelation sequence; which is sufficient for complete statistical descriptions of Gaussian signals of known means. However, there are practical situations where one needs to look beyond autocorrelation of a signal to extract information regarding deviation from Gaussianity and the presence of phase relations. Higher order spectra, also known as polyspectra, are spectral representations of higher order statistics, i.e. moments and cumulants of third order and beyond. HOS (higher order statistics or higher order spectra) can detect deviations from linearity, stationarity or Gaussianity in the signal. Most of the biomedical signals are non-linear, non-stationary and non-Gaussian in nature and therefore it can be more advantageous to analyze them with HOS compared to the use of second order correlations and power spectra. In this paper we have discussed the application of HOS for different bio-signals. HOS methods of analysis are explained using a typical heart rate variability (HRV) signal and applications to other signals are reviewed.
Resumo:
The ability to reproducibly load bioactive molecules into polymeric microspheres is a challenge. Traditional microsphere fabrication methods typically provide inhomogeneous release profiles and suffer from lack of batch to batch reproducibility, hindering their potential to up-scale and their translation to the clinic. This deficit in homogeneity is in part attributed to broad size distributions and variability in the morphology of particles. It is thus desirable to control morphology and size of non-loaded particles in the first instance, in preparation for obtaining desired release profiles of loaded particles in the later stage. This is achieved by identifying the key parameters involved in particle production and understanding how adapting these parameters affects the final characteristics of particles. In this study, electrospraying was presented as a promising technique for generating reproducible particles made of polycaprolactone, a biodegradable, FDA-approved polymer. Narrow size distributions were obtained by the control of electrospraying flow rate and polymer concentration, with average particle sizes ranging from 10 to 20 um. Particles were shown to be spherical with a homogenous embossed texture, determined by the polymer entanglement regime taking place during electrospraying. No toxic residue was detected by this process based on preliminary cell work using DNA quantification assays, validating this method as suitable for further loading of bioactive components.
Resumo:
The increasing ubiquity of digital technology, internet services and location-aware applications in our everyday lives allows for a seamless transitioning between the visible and the invisible infrastructure of cities: road systems, building complexes, information and communication technology, and people networks create a buzzing environment that is alive and exciting. Driven by curiosity, initiative and interdisciplinary exchange, the Urban Informatics Research Lab at Queensland University of Technology (QUT), Brisbane, Australia, is an emerging cluster of people interested in research and development at the intersection of people, place and technology with a focus on cities, locative media and mobile technology. This paper introduces urban informatics as a transdisciplinary practice across people, place and technology that can aid local governments, urban designers and planners in creating responsive and inclusive urban spaces and nurturing healthy cities. Three challenges are being discussed. First, people, and the challenge of creativity explores the opportunities and challenges of urban informatics that can lead to the design and development of new tools, methods and applications fostering participation, the democratisation of knowledge, and new creative practices. Second, technology, and the challenge of innovation examines how urban informatics can be applied to support user-led innovation with a view to promote entrepreneurial ideas and creative industries. Third, place, and the challenge of engagement discusses the potential to establish places within cities that are dedicated to place-based applications of urban informatics with a view to deliver community and civic engagement strategies.
Resumo:
The Electrocardiogram (ECG) is an important bio-signal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. The HRV signal can be used as a base signal to observe the heart's functioning. These signals are non-linear and non-stationary in nature. So, higher order spectral (HOS) analysis, which is more suitable for non-linear systems and is robust to noise, was used. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, we have extracted seven features from the heart rate signals using HOS and fed them to a support vector machine (SVM) for classification. Our performance evaluation protocol uses 330 subjects consisting of five different kinds of cardiac disease conditions. We demonstrate a sensitivity of 90% for the classifier with a specificity of 87.93%. Our system is ready to run on larger data sets.
Resumo:
Background In an attempt to establish some consensus on the proper use and design of experimental animal models in musculoskeletal research, AOVET (the veterinary specialty group of the AO Foundation) in concert with the AO Research Institute (ARI), and the European Academy for the Study of Scientific and Technological Advance, convened a group of musculoskeletal researchers, veterinarians, legal experts, and ethicists to discuss, in a frank and open forum, the use of animals in musculoskeletal research. Methods The group narrowed the field to fracture research. The consensus opinion resulting from this workshop can be summarized as follows: Results & Conclusion Anaesthesia and pain management protocols for research animals should follow standard protocols applied in clinical work for the species involved. This will improve morbidity and mortality outcomes. A database should be established to facilitate selection of anaesthesia and pain management protocols for specific experimental surgical procedures and adopted as an International Standard (IS) according to animal species selected. A list of 10 golden rules and requirements for conduction of animal experiments in musculoskeletal research was drawn up comprising 1) Intelligent study designs to receive appropriate answers; 2) Minimal complication rates (5 to max. 10%); 3) Defined end-points for both welfare and scientific outputs analogous to quality assessment (QA) audit of protocols in GLP studies; 4) Sufficient details for materials and methods applied; 5) Potentially confounding variables (genetic background, seasonal, hormonal, size, histological, and biomechanical differences); 6) Post-operative management with emphasis on analgesia and follow-up examinations; 7) Study protocols to satisfy criteria established for a "justified animal study"; 8) Surgical expertise to conduct surgery on animals; 9) Pilot studies as a critical part of model validation and powering of the definitive study design; 10) Criteria for funding agencies to include requirements related to animal experiments as part of the overall scientific proposal review protocols. Such agencies are also encouraged to seriously consider and adopt the recommendations described here when awarding funds for specific projects. Specific new requirements and mandates related both to improving the welfare and scientific rigour of animal-based research models are urgently needed as part of international harmonization of standards.
Resumo:
Over less than a decade, we have witnessed a seismic shift in the way knowledge is produced and exchanged. This is opening up new opportunities for civic and community engagement, entrepreneurial behaviour, sustainability initiatives and creative practices. It also has the potential to create fresh challenges in areas of privacy, cyber-security and misuse of data and personal information. The field of urban informatics focuses on the use and impacts of digital media technology in urban environments. Urban informatics is a dynamic and cross-disciplinary area of inquiry that encapsulates social media, ubiquitous computing, mobile applications and location-based services. Its insights suggest the emergence of a new economic force with the potential for driving innovation, wealth and prosperity through technological advances, digital media and online networks that affect patterns of both social and economic development. Urban informatics explores the intersections between people, place and technology, and their implications for creativity, innovation and engagement. This paper examines how the key learnings from this field can be used to position creative and cultural institutions such as galleries, libraries, archives and museums (GLAM) to take advantage of the opportunities presented by these changing social and technological developments. This paper introduces the underlying principles, concepts and research areas of urban informatics, against the backdrop of modern knowledge economies. Both theoretical ideas and empirical examples are covered in this paper. The first part discusses three challenges: a. People, and the challenge of creativity: The paper explores the opportunities and challenges of urban informatics that can lead to the design and development of new tools, methods and applications fostering participation, the democratisation of knowledge, and new creative practices. b. Technology, and the challenge of innovation: The paper examines how urban informatics can be applied to support user-led innovation with a view to promoting entrepreneurial ideas and creative industries. c. Place, and the challenge of engagement: The paper discusses the potential to establish place-based applications of urban informatics, using the example of library spaces designed to deliver community and civic engagement strategies. The discussion of these challenges is illustrated by a review of projects as examples drawn from diverse fields such as urban computing, locative media, community activism, and sustainability initiatives. The second part of the paper introduces an empirically grounded case study that responds to these three challenges: The Edge, the Queensland Government’s Digital Culture Centre which is an initiative of the State Library of Queensland to explore the nexus of technology and culture in an urban environment. The paper not only explores the new role of libraries in the knowledge economy, but also how the application of urban informatics in prototype engagement spaces such as The Edge can provide transferable insights that can inform the design and development of responsive and inclusive new library spaces elsewhere. To set the scene and background, the paper begins by drawing the bigger picture and outlining some key characteristics of the knowledge economy and the role that the creative and cultural industries play in it, grasping new opportunities that can contribute to the prosperity of Australia.
Resumo:
This special issue of the Journal of Community Informatics brings together people from a diverse range of disciplines to discuss how academic researchers and community practitioners and activists can work together to explore the use of information and communication technologies, social media, augmented reality, and other forms of network technologies for research and action in pursuit of social responsibility. The aim is to connect people with ideas, ideas with research projects, and harness new media to further inquiry into socially just outcomes in our community. Some of the papers are based on presentations given at the "Research for Action: Networking University and Community for Social Responsibility" workshop chaired by Matthew Allen and Marcus Foth, at the Making Links 2010 conference in Perth, WA on 15 Nov 2010.
Resumo:
This position paper provides an overview of a proposed study that seeks to design and develop tools, methods and applications of urban informatics to promote an innovation culture and knowledge economy in regional Queensland. The National Broadband Network has the potential to leapfrog regional Queensland to join the knowledge economy, but effective applications and content strategies are required. The Edge is the Queensland Government’s Digital Culture Centre to engage young people in the technology/culture nexus. This position paper provides an overview of a proposed study that will set up Living Labs at The Edge and in a new precinct in rural Queensland (Goondiwindi) as sites to trial strategies and applications that engage people in entrepreneurial thinking, sustainability initiatives, and new creative practices across the urban and rural boundaries.