998 resultados para biomass resources
Resumo:
The increasing attention to environmental issues of recent times encourages us to find new methods for the production of energy from renewable sources, and to improve existing ones, increasing their energy yield. Most of the waste and agricultural residues, with a high content of lignin and non-hydrolysable polymers, cannot be effectively transformed into biofuels with existing technology. The purpose of the study was to develop a new thermochemical/ biological process (named Py-AD) for the valorization of scarcely biodegradable substances. A complete continuous prototype was design built and run for 1 year. This consists into a slow pyrolysis system coupled with two sequential digesters and showed to produce a clean pyrobiogas (a biogas with significant amount of C2-C3 hydrocarbons and residual CO/H2), biochar and bio-oil. Py-AD yielded 31.7% w/w biochar 32.5% w/w oil and 24.8% w/w pyrobiogas. The oil condensate obtained was fractionated in its aqueous and organic fraction (87% and 13% respectively). Subsequently, the anaerobic digestion of aqueous fraction was tested in a UASB reactor, for 180 days, in increasing organic loading rate (OLR). The maximum convertible concentration without undergoing instability phenomena and with complete degradation of pyrogenic chemicals was 1.25 gCOD L digester-1 d-1. The final yield of biomethane was equal to 40% of the theoretical yield and with a noticeable additional production equal to 20% of volatile fatty acids. The final results confirm that anaerobic digestion can be used as a useful tool for cleaning of slow pyrolysis products (both gas and condensable fraction) and the obtaining of relatively clean pyrobiogas that could be directly used in internal combustion engine.
Resumo:
Dissertation presented to obtain the Ph.D degree in Engineering Sciences and Technology
Resumo:
Nowadays, the concrete production sector is challenged by attempts to minimize the usage of raw materials and energy consumption, as well as by environmental concerns. Therefore, it is necessary to choose better options, e.g. new technologies or materials with improved life-cycle performance. One solution for using resources in an efficient manner is to close the materials' loop through the recycling of materials that result either from the end-of-life of products or from being the by-product of an industrial process. It is well known that the production of Portland cement, one of the materials most used in the construction sector, has a significant contribution to the environmental impacts, mainly related with carbon dioxide emission. Therefore, the study and utilization of by-products or wastes usable as cement replacement in concrete can supply more sustainable options, provided that these type of concrete produced has same durability and equivalent quality properties as standard concrete. This work studied the environmental benefits of incorporating different percentages of two types of fly ashes that can be used in concrete as cement replacement. These ashes are waste products of power and heat production sectors using coal or biomass as fuels. The results showed that both ashes provide a benefit for the concrete production both in terms of environmental impact minimization and a better environmental performance through an increase in cement replacement. It is possible to verify that the incorporation of fly ashes is a sustainable option for cement substitution and a possible path to improve the environmental performance of the concrete industry.
Resumo:
Background: The reduction in the amount of food available for European avian scavengers as a consequence of restrictive public health policies is a concern for managers and conservationists. Since 2002, the application of several sanitary regulations has limited the availability of feeding resources provided by domestic carcasses, but theoretical studies assessing whether the availability of food resources provided by wild ungulates are enough to cover energetic requirements are lacking. Methodology/Findings: We assessed food provided by a wild ungulate population in two areas of NE Spain inhabited by three vulture species and developed a P System computational model to assess the effects of the carrion resources provided on their population dynamics. We compared the real population trend with to a hypothetical scenario in which only food provided by wild ungulates was available. Simulation testing of the model suggests that wild ungulates constitute an important food resource in the Pyrenees and the vulture population inhabiting this area could grow if only the food provided by wild ungulates would be available. On the contrary, in the Pre-Pyrenees there is insufficient food to cover the energy requirements of avian scavenger guilds, declining sharply if biomass from domestic animals would not be available. Conclusions/Significance: Our results suggest that public health legislation can modify scavenger population trends if a large number of domestic ungulate carcasses disappear from the mountains. In this case, food provided by wild ungulates could be not enough and supplementary feeding could be necessary if other alternative food resources are not available (i.e. the reintroduction of wild ungulates), preferably in European Mediterranean scenarios sharing similar and socio-economic conditions where there are low densities of wild ungulates. Managers should anticipate the conservation actions required by assessing food availability and the possible scenarios in order to make the most suitable decisions.
Resumo:
The performance of natural extracts obtained from underutilized and residual vegetal and macroalgal biomass processed with food-grade green solvents was compared with that of commercial antioxidants. Selected extracts were obtained from two terrestrial sources: winery byproducts concentrate (WBC) and chestnut burs hydrothermally fractionated extract (CBAE), and from two underutilized seaweeds: Sargassum muticum extracts, either extracted with ethanol (SmEE) or after alginate extraction and hydrothermal fractionation (SmAE) and from Ulva lactuca processed by mild acid extraction and membrane concentration (UlAE). These extracts showed in vitro antioxidant properties comparable to commercial antioxidants and were safe for topical use based on the absence of skin-irritant effects at 0.1% on reconstructed human tissues. The stability of several cosmetic model emulsions was assessed during accelerated oxidation assays. The incorporation of natural extracts produced from renewable underutilized resources at 0.4-0.5% in an oil-in-water emulsions reduced lipid oxidation during storage.
Resumo:
The development of new technologies to supplement fossil resources has led to a growing interest in the utilization of alternative routes. Biomass is a rich renewable feedstock for producing fine chemicals, polymers, and a variety of commodities replacing petroleumderived chemicals. Transformation of biomass into diverse valuable chemicals is the key concept of a biorefinery. Catalytic conversion of biomass, which reduces the use of toxic chemicals is one of the important approaches to improve the profitability of biorefineries. Utilization of gold catalysts allows conducting reactions under environmentally-friendly conditions, with a high catalytic activity and selectivity. Gold-catalyzed valorization of several biomass-derived compounds as an alternative approach to the existing technologies was studied in this work. Isomerization of linoleic acid via double bond migration towards biologically active conjugated linoleic acid isomers (CLA) was investigated. The activity and selectivity of various gold catalysts towards cis-9,trans-11-CLA and trans-10,cis-12-CLA were investigated in a semi-batch reactor, showing that the yield of the desired products varied, depending on the catalyst support. The structure sensitivity in the selective oxidation of arabinose was demonstrated using a series of gold catalysts with different Au cluster sizes in a shaker reactor operating in a semibatch mode. The gas-phase selective oxidation of ethanol was studied and the influence of the catalyst support on the catalytic performance was investigated. The selective oxidation of the lignan hydroxymatairesinol (HMR), extracted from the Norway spruce (Picea abies) knots, to the lignan oxomatairesinol (oxoMAT) was extensively investigated. The influence of the reaction conditions and catalyst properties on the yield of oxoMAT was evaluated. In particular, the structure sensitivity of the reaction was demonstrated. The catalyst deactivation and regeneration procedures were studied. The reaction kinetics and mechanism were advanced.
Resumo:
The use of narrow plant spacing in corn (Zea mays) has been suggested as a technological alternative to obtain grain yield increases, due to a better use of resources. The regular pattern could diminish intraspecific competition while favoring interspecific competition with weeds. The objective of this study was to analyze the effect of corn row spacing on weed aboveground biomass and corn grain yield. Field experiments were conducted during 2002/2003 and 2003/2004 growing seasons. Three corn hybrids with two-row width (0.70 and 0.35 m) were tested. A greater photosynthetic photon flux density (PPFD) interception with a lower weed aboveground dry matter in narrow row arrangement was obtained. Corn grain yield was greater in the narrow row arrangement than in the wide row spacing. This increase in grain yield was related to a better resource use that allows for a reduced interspecific competition. The use of reduced spatial arrangement appeared to be an interesting alternative to increase both the grain yield potential and corn suppressive ability against weeds in corn dryland production systems.
Resumo:
The parameters of germination, initial growth, and biomass allocation of three native plant species of Cerrado (Copaifera langsdorffii, Dipteryx alata and Kielmeyera coriacea) were established. The species had germination percentages above 88% and average germination times longer than 139 hours. The average time for the opening of the first leaf pair was more than 538 hours for all three species. The average root length of C. langsdorffii and D. alata seedlings after 80 days of growth was around 40cm, four times larger than the average shoot length (<10cm), although the root and shoot biomasses were similar for both species. The average root length (>20cm) of K. coriacea seedlings was four times larger than the average shoot length (<5cm), and the root biomass was 243% greater than the shoot biomass. Increase in seedling biomass was sustained primarily by the cotyledons in C. langsdorffii and D. alata, which acted as reserve organs and showed progressive weight reductions. Increase in seedling biomass in K. coriacea was sustained primarily by photosynthesis, since the cotyledons showed no significant weight reduction, acting primarily as photosynthetic organs. The length of the root systems was at least four times larger than the length of the shoots parts in all three species. Higher investment in root length rather than in root biomass suggest that the initial growth of these species is primarily to ensure access to water resources, apparently putting off the function of the radicular system as storage organ.
Resumo:
A rain shelter experiment was conducted in a 90-year-old Norway spruce stand, in the Kysucké Beskydy Mts (Slovakia). Three rain shelters were constructed in the stand to prevent the rainfall from reaching the soil and to reduce water availability in the rhizosphere. Fine root biomass and necromass were repeatedly measured throughout a growing season by soil coring. We established the quantities of fine root biomass (live) and necromass (dead) at soil depths of 0-5, 5-15, 15-25, and 25-35 cm. Significant differences in soil moisture contents between control and drought plots were found in the top 15 cm of soil after 20 weeks of rainfall manipulation (lasting from early June to late October). Our observations show that even relatively light drought decreased total fine root biomass from 272.0 to 242.8 g m-2 and increased the amount of necromass from 79.2 to 101.2 g m-2 in the top 35 cm of soil. Very fine roots, i.e. those with diameter up to 1 mm, were more affected than total fine roots defined as 0-2 mm. The effect of reduced water availability was depth-specific, as a result we observed a modification of vertical distribution of fine roots. More roots in drought treatment were produced in the wetter soil horizons at 25-35 cm depth than at the surface. We conclude that fine and very fine root systems of Norway spruce have the capacity to re-allocate resources to roots at different depths in response to environmental signals, resulting in changes in necromass to biomass ratio.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The spatial and temporal variation of microphytobenthic biomass in the nearshore zone of Martel Inlet (King George Island, Antarctica) was estimated at several sites and depths (10-60 m), during three summer periods (1996/1997, 1997/1998, 2004/2005). The mean values were inversely related to the bathymetric gradient: higher ones at 10-20 m depth (136.2 +/- A 112.5 mg Chl a m(-2), 261.7 +/- A 455.9 mg Phaeo m(-2)), intermediate at 20-30 m (55.6 +/- A 39.5 mg Chl a m(-2), 108.8 +/- A 73.0 mg Phaeo m(-2)) and lower ones at 40-60 m (22.7 +/- A 23.7 mg Chl a m(-2), 58.3 +/- A 38.9 mg Phaeo m(-2)). There was also a reduction in the Chl a/Phaeo ratio with depth, from 3.2 +/- A 3.2 (10-20 m) to 0.7 +/- A 1.0 (40-60 m), showing a higher contribution of senescent phytoplankton and/or macroalgae debris at the deeper sites and the limited light flux reaching the bottom. Horizontal differences found in the biomass throughout the inlet could not be clearly related to hydrodynamics or proximity to glaciers, but with sediment characteristics. An inter-summer variation was observed: the first summer presented the highest microphytobenthic biomass apparently related to more hydrodynamic conditions, which causes the deposition of allochthonous material.
Resumo:
Tropical forests are experiencing an increase in the proportion of secondary forests as a result of the balance between the widespread harvesting of old-growth forests and the regeneration in abandoned areas. The impacts of such a process on biodiversity are poorly known and intensely debated. Recent reviews and multi-taxa studies indicate that species replacement in wildlife assemblages is a consistent pattern, sometimes stronger than changes in diversity, with a replacement from habitat generalists to old-growth specialists being commonly observed during tropical forest regeneration. However, the ecological drivers of such compositional changes are rarely investigated, despite its importance in assessing the conservation value of secondary forests, and to support and guide management techniques for restoration. By sampling 28 sites in a continuous Atlantic forest area in Southeastern Brazil, we assessed how important aspects of habitat structure and food resources for wildlife change across successional stages, and point out hypotheses on the implications of these changes for wildlife recovery. Old-growth areas presented a more complex structure at ground level (deeper leaf litter, and higher woody debris volume) and higher fruit availability from an understorey palm, whereas vegetation connectivity, ground-dwelling arthropod biomass, and total fruit availability were higher in earlier successional stages. From these results we hypothetize that generalist species adapted to fast population growth in resource-rich environments should proliferate and dominate earlier successional stages, while species with higher competitive ability in resource-limited environments, or those that depend on resources such as palm fruits, on higher complexity at the ground level, or on open space for flying, should dominate older-growth forests. Since the identification of the drivers of wildlife recovery is crucial for restoration strategies, it is important that future work test and further develop the proposed hypotheses. We also found structural and functional differences between old-growth forests and secondary forests with more than 80 years of regeneration, suggesting that restoration strategies may be crucial to recover structural and functional aspects expected to be important for wildlife in much altered ecosystems, such as the Brazilian Atlantic forest. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Nowadays the development of sustainable polymers, with convenient properties to substitute the traditional petroleum-based materials, is one of the major issues for material science. The utilization of renewable resources as feedstock for biopolyesters is a challenging target.The research work described in the present thesis is strictly connected to these urgent necessities and is focused mainly in finding new biopolymers, in particular biopolyesters, which are obtainable from biomass and characterized by a wide range of properties, in order to potentially substitute polyolefins and aromatic polyesters (for example, poly(ethylene terephthalate))