987 resultados para bioclastic sediment
Resumo:
This paper reports a flume experiment of flow and sediment movement in a cavity. The flow velocity, sediment concentration and the mechanism of hydraulic sorting in the circulation flow are discussed. The quantity and patterns of sediment deposition in the circulation area are studied as well.
Resumo:
The particulate matter concentration above the seabed is usually assumed to decrease with height, following an exponential or Rouse profile. Many particulate matter concentration profiles with a peak were found on the North Mediterranean bottom water at a few tens of metres above the bottom. A particle size signal at the same altitude was found in this area and on the New York Eight shelf. It is assumed that this unexpected shape is due to a cloud of resuspended cohesive sediments originating from an impulse resuspension process. A simplified three-dimensional numerical model is proposed to describe the behaviour of resuspended particulate matter that originates from a sediment impulse vertically injected in the bottom water. This model reproduces the concentration profile shape observed, and it gives indications concerning the length and time characteristics of such a cloud, depending on the water velocity and bottom boundary layer properties.
Resumo:
A depth-integrated two-dimensional numerical model of current, salinity and sediment transport was proposed and calibrated by the observation data in the Yangtze River Estuary. It was then applied to investigate the flow and sediment ratio of the navigati
Resumo:
The failure of hydraulic structures in many estuaries and coastal regions around the world has been attributed to sediment transport and local scour. The sediment incipience in homogenous turbulence generated by oscillating grid is studied in this paper. The turbulent flow is measured by particle tracer velocimetry (PTV) technique. The integral length scale and time scale of turbulence are obtained. The turbulent flow near the wall is measured by local optical magnification. The sediment incipience is described by static theory. The relationship of probability of sediment incipience and the turbulent kinetic energy were obtained experimentally and theoretically. The distribution of the turbulent kinetic energy near the wall is found to obey the power law and the turbulent energy is further identified as the dynamic mechanism of sediment incipience.
Resumo:
Sediment transport in rill flows exhibits the characteristics of non-equilibrium transport, and the sediment transport rate of rill flow gradually recovers along the flow direction by erosion. By employing the concept of partial equilibrium sediment transport from open channel hydraulics, a dynamic model of rill erosion on hillslopes was developed. In the model, a parameter, called the restoration coefficient of sediment transport capacity, was used to express the recovery process of sediment transport rate, which was analysed by dimensional analysis and determined from laboratory experimental data. The values of soil loss simulated by the model were in agreement with observed values. The model results showed that the length and gradient of the hillslope and rainfall intensity had different influences on rill erosion. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
So far, various calculation models for the vertical distribution of suspended sediment concentration have been produced by several investigators from different theories. The limitations of all these models imply that it is possible to find a more reasonable model, for which each previous model can be included as special case. The formulation of a reasonable general model is the purpose of this paper.
Resumo:
The framework of sediment budget concepts provides a formalized procedure to account for the various components of sediment flux and the changes of volume that occur within a given region. Sediment budget methodology can be useful in a number of coastal engineering and research applications, including: inferring the amount of onshore sediment transport for a nearshore system that contains an "excess of sediment", determining sediment deficits to downdrift beaches as a result of engineering works at navigational entrances, evaluating the performance of a beach nourishment project, inferring the distribution of longshore sediment transport across the surf zone, etc. This chapter reviews briefly the governing equations for sediment budget calculations, considers various measurement and other bases for determining the sediment flux components necessary to apply the sediment budget concept and finally for illustration purposes, applies the sediment budget concept to several examples. (PDF contains 52 pages.)
Resumo:
Five short bottom sediment cores taken in Wakulla Spring Wakulla County, Florida, were described lithologically and sampled for palynological study. Four of the cores were recoveredfrom sediments at the spring cave entrance (130 feet water depth). One core was taken in a fossil vertebrate bone bed, 280 feet distance into the main spring cave at a water depth of 240 feet. Sediments in the cores are composed of alternating intervals of quartz sand and calcilitite, containing freshwater diatoms, freshwater mollusk shells and plant remains. The predominant pollen present in all cores consists of a periporate variety typical of the herb families Chenopodiaceae and Amaranthaceae. Arboreal flora, typical of the area surrounding the spring today, represent a very low percentage of thle pollen assemblage in the cores. Clustered Chenopod-Amaranth type pollen observed in one core suggest minimal transport prior to deposition, and indicate that the bottom sediments in the cave may be essentially In situ. An absence of exotic flora suggests a Quaternary age for the sediments. (PDF contains 11 pages.)
Resumo:
Infestations of the marine macrophytic alga Caulerpa taxifolia were discovered in Agua Hedionda Lagoon, California in 2000. Rapid response actions included containment under pvc tarps coupled with injection of liquid sodium hypochlorite. To assess the efficacy of these treatments, replicated sediment cores were removed from representative treated sites and transferred to grow-out facilities. Similar cores from uninfested (control) sediments were removed, inoculated with viable explants of C. taxifolia and placed in grow-out facilities. Results from two sampling periods (1 year, 2 years post-treatment) showed that no viable C. taxifolia emerged in cores, and that inoculated “control” sediments supported normal growth. Eelgrass ( Zostera marina L.) seedlings emerged from native seed-banks in “treated” cores, which also supported growth of some invertebrates (annelid worms and hydroids). This study provided essential verification of C. taxifolia eradication efforts, and demonstrates the feasibility of incorporating quality control/quality assurance components in rapid response actions. Results of this study also suggest that seeds of eelgrass are viable for at least two years. (PDF has 9 pages.)
Resumo:
Hygrophila ( Hygrophila polysperma (Roxb.) T. Anderson) is a plants which forms serious aquatic weed problems. Both submerged and emergent growth forms occur. Nutritional studies with a controlled release fertilizer and sediments collected from hygrophila-infested areas were conducted with the emergent growth habit to provide insights into growth of this introduced plant. Plant dry weights for experimental 16- week culture periods with low average temperatures were associated with low amounts of hygrophila biomass as compared to culture periods with high average temperatures. Hygrophila cultured in sand rooting media with the controlled release fertilizer produced as much as 20 times more dry weight than plants cultured in sediments only. First-degree linear regression statistics showed hygrophila dry weights were highly related to ammonia nitrogen, magnesium, sodium, and pH values in the sediments. These findings show the close relationship of the emergent growth habit of hygrophila to sediment nutrients. Analyses for certain sediment characteristics may provide an indication of the potential growth that may be expected for weed infestations of this plant. Hygrophila grows year round in south Florida; however, visual observations of canals and other bodies of water indicate that lower amounts of hygrophila plants occur during the cooler months of year than during the summer season. These findings show the seasonal growth of emergent hygrophila occurs with biomass dependent on both sediment nutrients and temperature.
Resumo:
The problem of predicting sediment transportation by water waves is treated analytically with the rate of wave energy dissipation or wave damping. With resorting to the theory of shallow water waves and the basis of Yamamoto’s Coulomb-damped poroelastic model, the Boussinesq-type equation has been derived over a variation depth bed. For convenience Cnoidal wave is just discussed, The Cnoidal wave with complex wave length and wave velocity, which are as a function of wave frequency, water depth, permeability, Poisson’s ratio and complex elastic moduli of bed soil, is applied to analyse the rate of sediment transportation. Considering the sediment transportation depended on the shear stress near-bed or the horizontal velocity, the conclusion of Yamamoto’s experiment in clay bed has been extended to general situation. It could be figured out that the model should provide a method to avoid the undistinguishable factors during sediment transport processes and relate mass transport with the sediment peculiarities.
Resumo:
INTRODUCTION: This report summarizes the results of NOAA's sediment toxicity, chemistry, and benthic community studies in the Chesapeake Bay estuary. As part of the National Status and Trends (NS&T) Program, NOAA has conducted studies to determine the spatial extent and severity of chemical contamination and associated adverse biological effects in coastal bays and estuaries of the United States since 1991. Sediment contamination in U.S. coastal areas is a major environmental issue because of its potential toxic effects on biological resources and often, indirectly, on human health. Thus, characterizing and delineating areas of sediment contamination and toxicity and demonstrating their effect(s) on benthic living resources are viewed as important goals of coastal resource management. Benthic community studies have a history of use in regional estuarine monitoring programs and have been shown to be an effective indicator for describing the extent and magnitude of pollution impacts in estuarine ecosystems, as well as for assessing the effectiveness of management actions. Chesapeake Bay is the largest estuarine system in the United States. Including tidal tributaries, the Bay has approximately 18,694 km of shoreline (more than the entire US West Coast). The watershed is over 165,000 km2 (64,000 miles2), and includes portions of six states (Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia) and the District of Columbia. The population of the watershed exceeds 15 million people. There are 150 rivers and streams in the Chesapeake drainage basin. Within the watershed, five major rivers - the Susquehanna, Potomac, Rappahannock, York and James - provide almost 90% of the freshwater to the Bay. The Bay receives an equal volume of water from the Atlantic Ocean. In the upper Bay and tributaries, sediments are fine-grained silts and clays. Sediments in the middle Bay are mostly made of silts and clays derived from shoreline erosion. In the lower Bay, by contrast, the sediments are sandy. These particles come from shore erosion and inputs from the Atlantic Ocean. The introduction of European-style agriculture and large scale clearing of the watershed produced massive shifts in sediment dynamics of the Bay watershed. As early as the mid 1700s, some navigable rivers were filled in by sediment and sedimentation caused several colonial seaports to become landlocked. Toxic contaminants enter the Bay via atmospheric deposition, dissolved and particulate runoff from the watershed or direct discharge. While contaminants enter the Bay from several sources, sediments accumulate many toxic contaminants and thus reveal the status of input for these constituents. In the watershed, loading estimates indicate that the major sources of contaminants are point sources, stormwater runoff, atmospheric deposition, and spills. Point sources and urban runoff in the Bay proper contribute large quantities of contaminants. Pesticide inputs to the Bay have not been quantified. Baltimore Harbor and the Elizabeth River remain among the most contaminated areas in the Unites States. In the mainstem, deep sediment core analyses indicate that sediment accumulation rates are 2-10 times higher in the northern Bay than in the middle and lower Bay, and that sedimentation rates are 2-10 times higher than before European settlement throughout the Bay (NOAA 1998). The core samples show a decline in selected PAH compounds over the past several decades, but absolute concentrations are still 1 to 2 orders of magnitude above 'pristine' conditions. Core data also indicate that concentrations of PAHs, PCBs and, organochlorine pesticides do not demonstrate consistent trends over 25 years, but remain 10 times lower than sediments in the tributaries. In contrast, tri-butyl-tin (TBT) concentrations in the deep cores have declined significantly since it=s use was severely restricted. (PDF contains 241 pages)
Resumo:
As a component of a three-year cooperative effort of the Washington State Department of Ecology and the National Oceanic and Atmospheric Administration, surficial sediment samples from 100 locations in southern Puget Sound were collected in 1999 to determine their relative quality based on measures of toxicity, chemical contamination, and benthic infaunal assemblage structure. The survey encompassed an area of approximately 858 km2, ranging from East and Colvos Passages south to Oakland Bay, and including Hood Canal. Toxic responses were most severe in some of the industrialized waterways of Tacoma’s Commencement Bay. Other industrialized harbors in which sediments induced toxic responses on smaller scales included the Port of Olympia, Oakland Bay at Shelton, Gig Harbor, Port Ludlow, and Port Gamble. Based on the methods selected for this survey, the spatial extent of toxicity for the southern Puget Sound survey area was 0% of the total survey area for amphipod survival, 5.7% for urchin fertilization, 0.2% for microbial bioluminescence, and 5- 38% with the cytochrome P450 HRGS assay. Measurements of trace metals, PAHs, PCBs, chlorinated pesticides, other organic chemicals, and other characteristics of the sediments, indicated that 20 of the 100 samples collected had one or more chemical concentrations that exceeded applicable, effects-based sediment guidelines and/or Washington State standards. Chemical contamination was highest in eight samples collected in or near the industrialized waterways of Commencement Bay. Samples from the Thea Foss and Middle Waterways were primarily contaminated with a mixture of PAHs and trace metals, whereas those from Hylebos Waterway were contaminated with chlorinated organic hydrocarbons. The remaining 12 samples with elevated chemical concentrations primarily had high levels of other chemicals, including bis(2-ethylhexyl) phthalate, benzoic acid, benzyl alcohol, and phenol. The characteristics of benthic infaunal assemblages in south Puget Sound differed considerably among locations and habitat types throughout the study area. In general, many of the small embayments and inlets throughout the study area had infaunal assemblages with relatively low total abundance, taxa richness, evenness, and dominance values, although total abundance values were very high in some cases, typically due to high abundance of one organism such as the polychaete Aphelochaeta sp. N1. The majority of the samples collected from passages, outer embayments, and larger bodies of water tended to have infaunal assemblages with higher total abundance, taxa richness, evenness, and dominance values. Two samples collected in the Port of Olympia near a superfund cleanup site had no living organisms in them. A weight-of-evidence approach used to simultaneously examine all three “sediment quality triad” parameters, identified 11 stations (representing 4.4 km2, 0.5% of the total study area) with sediment toxicity, chemical contamination, and altered benthos (i.e., degraded sediment quality), 36 stations (493.5 km2, 57.5% total study area) with no toxicity or chemical contamination (i.e., high sediment quality), 35 stations (274.1 km2, 32.0% total study area) with one impaired sediment triad parameter (i.e., intermediate/high sediment quality), and 18 stations (85.7km2, 10.0% total study area) with two impaired sediment parameters (i.e., intermediate/degraded quality sediments). Generally, upon comparison, the number of stations with degraded sediments based upon the sediment quality triad of data was slightly greater in the central Puget Sound than in the northern and southern Puget Sound study areas, with the percent of the total study area degraded in each region decreasing from central to north to south (2.8, 1.3 and 0.5%, respectively). Overall, the sediments collected in Puget Sound during the combined 1997-1999 surveys were among the least contaminated relative to other marine bays and estuaries studied by NOAA using equivalent methods. (PDF contains 351 pages)
Resumo:
The toxicity of sediments in Sabine Lake, Texas, and adjoining Intracoastal Waterway canals was determined as part of bioeffects assessment studies managed by NOAA’s National Status and Trends Program. The objectives of the survey were to determine: (1) the incidence and degree of toxicity of sediments throughout the study area; (2) the spatial patterns (or gradients) in chemical contamination and toxicity, if any, throughout the study area; (3) the spatial extent of chemical contamination and toxicity; and (4) the statistical relationships between measures of toxicity and concentrations of chemicals in the sediments. Surficial sediment samples were collected during August, 1995 from 66 randomly-chosen locations. Laboratory toxicity tests were performed as indicators of potential ecotoxicological effects in sediments. A battery of tests was performed to generate information from different phases (components) of the sediments. Tests were selected to represent a range in toxicological endpoints from acute to chronic sublethal responses. Toxicological tests were conducted to measure: reduced survival of adult amphipods exposed to solid-phase sediments; impaired fertilization success and abnormal morphological development in gametes and embryos, respectively, of sea urchins exposed to pore waters; reduced metabolic activity of a marine bioluminescent bacteria exposed to organic solvent extracts; and induction of a cytochrome P-450 reporter gene system in exposures to solvent extracts of the sediments. Chemical analyses were performed on portions of each sample to quantify the concentrations of trace metals, polynuclear aromatic hydrocarbons, and chlorinated organic compounds. Correlation analyses were conducted to determine the relationships between measures of toxicity and concentrations of potentially toxic substances in the samples. Based upon the compilation of results from chemical analyses and toxicity tests, the quality of sediments in Sabine Lake and vicinity did not appear to be severely degraded. Chemical concentrations rarely exceeded effects-based numerical guidelines, suggesting that toxicant-induced effects would not be expected in most areas. None of the samples was highly toxic in acute amphipod survival tests and a minority (23%) of samples were highly toxic in sublethal urchin fertilization tests. Although toxic responses occurred frequently (94% of samples) in urchin embryo development tests performed with 100% pore waters, toxicity diminished markedly in tests done with diluted pore waters. Microbial bioluminescent activity was not reduced to a great degree (no EC50 <0.06 mg/ml) and cytochrome P-450 activity was not highly induced (6 samples exceeded 37.1 ug/g benzo[a]pyrene equivalents) in tests done with organic solvent extracts. Urchin embryological development was highly correlated with concentrations of ammonia and many trace metals. Cytochrome P450 induction was highly correlated with concentrations of a number of classes of organic compounds (including the polynuclear aromatic hydrocarbons and chlorinated compounds). (PDF contains 51 pages)