947 resultados para bio-based nanocomposites


Relevância:

90.00% 90.00%

Publicador:

Resumo:

4th Conference COST ACTION FP1303 – Designing with Bio-based Materials – Challenges and opportiunities. INIA – CSIC, Madrid, 24-25 February 2016. Book of abstracts, T.Troya, J.Galván, D.Jones (Eds.), INIA and IETcc – CSIS, pg. 79-80 (ISBN: 978-91-88349-16-3)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Shifting from chemical to biotechnological processes is one of the cornerstones of 21st century industry. The production of a great range of chemicals via biotechnological means is a key challenge on the way toward a bio-based economy. However, this shift is occurring at a pace slower than initially expected. The development of efficient cell factories that allow for competitive production yields is of paramount importance for this leap to happen. Constraint-based models of metabolism, together with in silico strain design algorithms, promise to reveal insights into the best genetic design strategies, a step further toward achieving that goal. In this work, a thorough analysis of the main in silico constraint-based strain design strategies and algorithms is presented, their application in real-world case studies is analyzed, and a path for the future is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most bituminous adhesives or binders that are used for pavement materials are derived primarily from fossil fuels. With petroleum oil reserves becoming depleted and the drive to establish a bio-based economy, there is a push to produce binders from alternative sources, particularly from biorenewable resources. However, until now, no research has studied the applicability of utilizing bio-oils as a bitumen replacement (100% replacement) in the pavement industry. The main objective of this research was to test various properties of bio-oils in order to determine the applicability of using bio-oils as binders in the pavement industry. The overall conclusions about the applicability of using bio-oils as bio-binders in the pavement industry can be summarized as follows: 1. Bio-oils cannot be used as bio-binders/pavement materials without any heat pre-treatment/upgrading procedure. 2. Current testing standards and specifications, especially Superpave procedures, should be modified to comply with the properties of bio-binders. 3. The temperature range of the viscous behavior for bio-oils may be lower than that of bitumen binders by about 30°–40° C. 4. The rheological properties of the unmodified bio-binders vary in comparison to bitumen binders, but the rheological properties of these modified bio-binders change significantly upon adding polymer modifiers. 5. The high-temperature performance grade for the developed bio-binders may not vary significantly from that of the bitumen binders, but the low-temperature performance grade may vary significantly

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Poly(ethylene terephthalate) (PET) based nanocomposites have been prepared with single walled carbon nanotubes (SWNTs) through an ultrasound assisted dissolution-evaporation method. Differential scanning calorimetry studies showed that SWNTs nucleate crystallization in PET at weight fractions as low as 0.3%, as the nanocomposite melt crystallized during cooling at temperature 24 °C higher than neat PET of identical molecular weight. Isothermal crystallization studies also revealed that SWNTs significantly accelerate the crystallization process. Mechanical properties of the PETSWNT nanocomposites improved as compared to neat PET indicating the effective reinforcement provided by nanotubes in the polymer matrix. Electrical conductivity measurements on the nanocomposite films showed that SWNTs at concentrations exceeding 1 wt% in the PET matrix result in electrical percolation. Comparison of crystallization, conductivity and transmission electron microscopy studies revealed that ultrasound assisted dissolution-evaporation method enables more effective dispersion of SWNTs in the PET matrix as compared to the melt compounding method

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The spectral and nonlinear optical characteristics of nano ZnO and its composites are investigated. The fluorescence behaviour of nano colloids of ZnO has been studied as a function of the excitation wavelength and there is a red shift in emission peak with excitation wavelength. Apart from the observation of the reported ultra violet and green emissions, our results reveal that additional blue emissions at 420 nm and 490 nm are developed with increasing particle size. Systematic studies on nano ZnO have indicated the presence of luminescence due to excitonic emissions when excited with 255 nm as well as significant contribution from surface defect states when excited with 325 nm. In the weak confinement regime, the third-order optical susceptibility χ(3) increases with increasing particle size (R) and annealing temperature (T) and a R2 and T2.5 dependence of χ(3) is obtained for nano ZnO. ZnO nanocolloids exhibit induced absorption whereas the self assembled films of ZnO exhibit saturable absorption due to saturation of linear absorption of ZnO defect states and electronic effects. ZnO nanocomposites exhibit negative nonlinear index of refraction which can be attributed to two photon absorption followed by weak free carrier absorption. The increase of the third-order nonlinearity in the composites can be attributed to the enhancement of exciton oscillator strength. The nonlinear response of ZnO nanocomposites is wavelength dependent and switching from induced absorption to saturable absorption has been observed at resonant wavelengths. Such a change-over is related to the interplay of plasmon/exciton band bleach and optical limiting mechanisms. This study is important in identifying the spectral range and the composition over which the nonlinear material acts as an optical limiter. ZnO based nanocomposites are potential materials for enhanced and tunable light emission and for the development of nonlinear optical devices with a relatively small optical limiting threshold.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The spectral and nonlinear optical properties of ZnO based nanocomposites prepared by colloidal chemical synthesis are investigated. Very strong UV emissions are observed from ZnO–Ag, ZnO– Cu and ZnO–SiO2 nanocomposites. The strongest visible emission of a typical ZnO–Cu nanocomposite is over ten times stronger than that of pure Cu due to transition from deep donor level to the copper induced level. The optical band gap of ZnO–CdS and ZnO–TiO2 nanocomposites is tunable and emission peaks changes almost in proportion to changes in band gap. Nonlinear optical response of these nanocomposites is studied using nanosecond laser pulses from a tunable laser in the wavelength range of 450–650 nm at resonance and off-resonance wavelengths. The nonlinear response is wavelength dependent and switching from RSA to SA has been observed at resonant wavelengths. Such a change-over is related to the interplay of plasmon/exciton band bleach and optical limiting mechanisms. The observed nonlinear absorption is explained through two photon absorption followed by weak free carrier absoption, interband absorption and nonlinear scattering mechanisms. The nonlinearity of the silica colloid is low and its nonlinear response can be improved by making composites with ZnO and ZnO–TiO2. The increase of the third-order nonlinearity in the composites can be attributed to the enhancement of exciton oscillator strength. This study is important in identifying the spectral range and the composition over which the nonlinear material acts as an RSA based optical limiter. These nanocomposites can be used as optical limiters and are potential materials for the light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The spectral and nonlinear optical properties of ZnO based nanocomposites prepared by colloidal chemical synthesis are investigated. Very strong UV emissions are observed from ZnO–Ag, ZnO– Cu and ZnO–SiO2 nanocomposites. The strongest visible emission of a typical ZnO–Cu nanocomposite is over ten times stronger than that of pure Cu due to transition from deep donor level to the copper induced level. The optical band gap of ZnO–CdS and ZnO–TiO2 nanocomposites is tunable and emission peaks changes almost in proportion to changes in band gap. Nonlinear optical response of these nanocomposites is studied using nanosecond laser pulses from a tunable laser in the wavelength range of 450–650 nm at resonance and off-resonance wavelengths. The nonlinear response is wavelength dependent and switching from RSA to SA has been observed at resonant wavelengths. Such a change-over is related to the interplay of plasmon/exciton band bleach and optical limiting mechanisms. The observed nonlinear absorption is explained through two photon absorption followed by weak free carrier absoption, interband absorption and nonlinear scattering mechanisms. The nonlinearity of the silica colloid is low and its nonlinear response can be improved by making composites with ZnO and ZnO–TiO2. The increase of the third-order nonlinearity in the composites can be attributed to the enhancement of exciton oscillator strength. This study is important in identifying the spectral range and the composition over which the nonlinear material acts as an RSA based optical limiter. These nanocomposites can be used as optical limiters and are potential materials for the light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Human race of our century is in gluttonous search for novel engineering products which led to a skyrocketed progress in research and fabrication of filled polymers. Recently, a big window has been opened up for speciality polymers especially elastomers with promising properties. Among the many reasons why rubbers are widely used in the process industries, three are considered as important. Firstly, rubbers operate in a variety of environments and possess usable ranges of deformity and durability and can be exploited through suitable and more or less conventional equipment design principles. Secondly, rubber is an eminently suitable construction material for protection against corrosion in the chemical plant and equipment against various corrosive chemicals as, acids and alkalies and if property tailored, can shield ionising radiations as X-rays and gamma rays in medical industry, with minimum maintenance lower down time, negligible corrosion and a preferred choice for aggressive corroding and ionising environment. Thirdly, rubber can readily and hastily, and at a relatively lower cost, be converted into serviceable products, having intricate shapes and dimensions. In a century’s gap, large employment of flexible polymer materials in the different segments of industry has stimulated the development of new materials with special properties, which paved its way to the synthesis of various nanoscale materials. At nano scale, one makes an entry into a world where multidisciplinary sciences meet and utilises the previously unapproached infinitesimal length scale, having dimension which measure upto one billionth of a meter, to create novel properties. The nano fillers augment the elastomers properties in an astonishing fashion due to their multifunctional nature and unprecedented properties have been exhibited by these polymer-nanocomposites just to beat the shortcomings of traditional micro composites. The current research aims to investigate the possibility of using synthesised nano barium sulphate for fabricating elastomer-based nanocomposites and thereby imparting several properties to the rubber. In this thesis, nano materials, their synthesis, structure, properties and applications are studied. The properties of barium sulphate like chemical resistance and radiopacity have been utilized in the present study and is imparted to the elastomers by preparing composites

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The modelling of the local structure of sol-gel derived Eu3+-based organic/inorganic hybrids is reported, based on Small-Angle X-ray Scattering (SAXS), photoluminescence and mid-infrared spectroscopy. The hybrid matrix of these organically modified silicates, classed as di-ureasils and termed U(2000) and U(600), is formed by poly( oxyethylene) (POE) chains of variable length grafted to siloxane domains by means of urea cross-linkages. Europium triflate, Eu(CF3SO3)(3), was incorporated in the two di-ureasil matrices with compositions 400 greater than or equal ton greater than or equal to 10, n is the molar ratio of ether oxygens per Eu3+. The SAXS data for undoped hybrids (n=infinity) show the presence of a well-defined peak attributed to the existence of a liquid-like spatial correlation of siloxane rich domains embedded in the polymer matrix and located at the ends of the organic segments. The obtained siloxane particle gyration radius Rg(1) is around 5 Angstrom (error within 10%), whereas the interparticle distance d is 25 +/-2 Angstrom and 40 +/-2 Angstrom, for U(600) and U(2000), respectively. For the Eu3+-based nanocomposites the formation of a two-level hierarchical local structure is discerned. The primary level is constituted by strongly spatially correlated siloxane particles of gyration radius Rg(1) (4-6 and 3-8 Angstrom, errors within 5%, for U(600())n Eu(CF3SO3)(3), 200 greater than or equal ton greater than or equal to 40, and U(2000)(n)Eu(CF3SO3)(3), 400 greater than or equal ton greater than or equal to 40, respectively) forming large clusters of gyration radius Rg(2) (approximate to 75 +/- 10 Angstrom). The local coordination of Eu3+ in both di-ureasil series is described combining the SAXS, photoluminescence and mid-infrared results. In the di-ureasils containing long polymer chains, U(2000)(n)Eu(CF3SO3)(3), the cations interact exclusively with the carbonyl oxygens atoms of the urea bridges at the siloxane-POE interface. In the hybrids containing shorter chains, U(600)(n)Eu(CF3SO3)(3) with n ranging from 200 to 60, the Eu3+ ions interact solely with the ether-type oxygens of the polymer chains. Nevertheless, in this latter family of hybrids a distinct Eu3+ local site environment involving the urea cross-linkages is detected when the europium content is increased up to n=40.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thermal and thermomechanical properties of poly(phenylene sulphide) (PPS) based nanocomposites incorporating a polymer derivative covalently anchored onto single-walled carbon nanotubes (SWCNTs) were investigated. The grafted fillers acted as nucleating agents, increasing the crystallization temperature and degree of crystallinity of the matrix. They also enhanced its thermal stability, flame retardancy, glass transition (Tg) and heat deflection temperatures while reduced the coefficient of thermal expansion at temperatures below Tg. A strong rise in the thermal conductivity, Young?s modulus and tensile strength was found with increasing filler loading both in the glassy and rubbery states. All these outstanding improvements are ascribed to strong matrix-filler interfacial interactions combined with a compatibilization effect that results in very homogeneous SWCNT dispersion. The results herein offer useful insights towards the development of engineering thermoplastic/CNT nanocomposites for high-temperature applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polymer processing experiments have been conducted with a twin screw extruder. Different formulations of starch-based nanocomposites are being tested in a pilot scale film blowing tower. The physical properties of different starch-based films have been examined with thermal and mechanical analysis and X-ray diffraction. The results show that the addition of organoclay significantly improves both the processing and tensile properties over the original starch blends. The mechanical and thermal properties of the blends are also sensitive to the scale the clay particles are dispersed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Human race of our century is in gluttonous search for novel engineering products which led to a skyrocketed progress in research and fabrication of filled polymers. Recently, a big window has been opened up for speciality polymers especially elastomers with promising properties. Among the many reasons why rubbers are widely used in the process industries, three are considered as important. Firstly, rubbers operate in a variety of environments and possess usable ranges of deformity and durability and can be exploited through suitable and more or less conventional equipment design principles. Secondly, rubber is an eminently suitable construction material for protection against corrosion in the chemical plant and equipment against various corrosive chemicals as, acids and alkalies and if property tailored, can shield ionising radiations as X-rays and gamma rays in medical industry, with minimum maintenance lower down time, negligible corrosion and a preferred choice for aggressive corroding and ionising environment. Thirdly, rubber can readily and hastily, and at a relatively lower cost, be converted into serviceable products, having intricate shapes and dimensions. In a century’s gap, large employment of flexible polymer materials in the different segments of industry has stimulated the development of new materials with special properties, which paved its way to the synthesis of various nanoscale materials. At nano scale, one makes an entry into a world where multidisciplinary sciences meet and utilises the previously unapproached infinitesimal length scale, having dimension which measure upto one billionth of a meter, to create novel properties. The nano fillers augment the elastomers properties in an astonishing fashion due to their multifunctional nature and unprecedented properties have been exhibited by these polymer-nanocomposites just to beat the shortcomings of traditional micro composites. The current research aims to investigate the possibility of using synthesised nano barium sulphate for fabricating elastomer-based nanocomposites and thereby imparting several properties to the rubber. In this thesis, nano materials, their synthesis, structure, properties and applications are studied. The properties of barium sulphate like chemical resistance and radiopacity have been utilized in the present study and is imparted to the elastomers by preparing composites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Instituto de Química, Curso de Pós-Graduação em Química, 2016.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the last decades, intensive research has been carried out in order to replace oil-based polymers with bio-based polymers due to growing environmental concerns. So far, most of the barrier materials used in food packaging are petroleum-based materials. The purpose of the barrier is to protect the packaged food from oxygen, water vapour, water and fat. The mechanical and barrier properties of coatings based on starch-plasticizer and starch-poly(vinyl alcohol) (PVOH)-plasticizer blends have been studied in the work described in this thesis. The plasticizers used were glycerol, polyethylene glycol and citric acid. In a second step, polyethylene coatings were extruded onto paperboard pre-coated with a starch-PVOH-plasticizer blend. The addition of PVOH to the starch increased the flexibility of the film. Curing of the film led to a decrease in flexibility and an increase in tensile strength. The flexibility of the starch-PVOH films was increased more when glycerol or polyethylene glycol was added than citric acid. The storage modulus of the starch-PVOH films containing citric acid increased substantially at high temperature. It was seen that the addition of polyethylene glycol or citric acid to the starch-PVOH blend resulted in an enrichment of PVOH at the surface of the films. Tensile tests on the films indicated that citric acid acted as a compatibilizer and increased the compatibility of the starch and PVOH in the blend. The addition of citric acid to the coating recipe substantially decreased the water vapour transmission rate through the starch-PVOH coated paperboard, which indicated that citric acid acts as a cross-linker for starch and/or PVOH. The starch-PVOH coatings containing citric acid showed oxygen-barrier properties similar to those of pure PVOH or of a starch-PVOH blend without plasticizer when four coating layers were applied on a paperboard. The oxygen-barrier properties of coatings based on a starch-PVOH blend containing citric acid indicated a cross-linking and increase in compatibility of the starch-PVOH blends. Polyethylene extrusion coating on a pre-coated paperboard resulted in a clear reduction in the oxygen transmission rate for all the pre-coating formulations containing plasticizers. The addition of a plasticizer to the pre-coating reduced the adhesion of polyethylene to pre-coated board. Polyethylene extrusion coating gave a board with a lower oxygen transmission rate when the paperboard was pre-coated with a polyethylene-glycol-containing formulation than with a citric-acid-containing formulation. The addition of polyethylene glycol to pre-coatings indicated an increase in wetting of the pre-coated paperboard by the polyethylene melt, and this may have sealed the small defects in the pre-coating leading to low oxygen transmission rate. The increase in brittleness of starch-PVOH films containing citric acid at a high temperature seemed to have a dominating effect on the barrier properties developed by the extrusion coating process.