977 resultados para binary data


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background Banana cultivars are mostly derived from hybridization between wild diploid subspecies of Musa acuminata (A genome) and M. balbisiana (B genome), and they exhibit various levels of ploidy and genomic constitution. The Embrapa ex situ Musa collection contains over 220 accessions, of which only a few have been genetically characterized. Knowledge regarding the genetic relationships and diversity between modern cultivars and wild relatives would assist in conservation and breeding strategies. Our objectives were to determine the genomic constitution based on Internal Transcribed Spacer (ITS) regions polymorphism and the ploidy of all accessions by flow cytometry and to investigate the population structure of the collection using Simple Sequence Repeat (SSR) loci as co-dominant markers based on Structure software, not previously performed in Musa. Results From the 221 accessions analyzed by flow cytometry, the correct ploidy was confirmed or established for 212 (95.9%), whereas digestion of the ITS region confirmed the genomic constitution of 209 (94.6%). Neighbor-joining clustering analysis derived from SSR binary data allowed the detection of two major groups, essentially distinguished by the presence or absence of the B genome, while subgroups were formed according to the genomic composition and commercial classification. The co-dominant nature of SSR was explored to analyze the structure of the population based on a Bayesian approach, detecting 21 subpopulations. Most of the subpopulations were in agreement with the clustering analysis. Conclusions The data generated by flow cytometry, ITS and SSR supported the hypothesis about the occurrence of homeologue recombination between A and B genomes, leading to discrepancies in the number of sets or portions from each parental genome. These phenomenons have been largely disregarded in the evolution of banana, as the “single-step domestication” hypothesis had long predominated. These findings will have an impact in future breeding approaches. Structure analysis enabled the efficient detection of ancestry of recently developed tetraploid hybrids by breeding programs, and for some triploids. However, for the main commercial subgroups, Structure appeared to be less efficient to detect the ancestry in diploid groups, possibly due to sampling restrictions. The possibility of inferring the membership among accessions to correct the effects of genetic structure opens possibilities for its use in marker-assisted selection by association mapping.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work is to carry out an applicative, comparative and exhaustive study between several entropy based indicators of independence and correlation. We considered some indicators characterized by a wide and consolidate literature, like mutual information, joint entropy, relative entropy or Kullback Leibler distance, and others, more recently introduced, like Granger, Maasoumi and racine entropy, also called Sρ, or utilized in more restricted domains, like Pincus approximate entropy or ApEn. We studied the behaviour of such indicators applying them to binary series. The series was designed to simulate a wide range of situations in order to characterize indicators limit and capability and to identify, case by case, the more useful and trustworthy ones. Our target was not only to study if such indicators were able to discriminate between dependence and independence because, especially for mutual information and Granger, Maasoumi and Racine, that was already demonstrated and reported in literature, but also to verify if and how they were able to provide information about structure, complexity and disorder of the series they were applied to. Special attention was paid on Pincus approximate entropy, that is said by the author to be able to provide information regarding the level of randomness, regularity and complexity of a series. By means of a focused and extensive research, we furthermore tried to clear the meaning of ApEn applied to a couple of different series. In such situation the indicator is named in literature as cross-ApEn. The cross-ApEn meaning and the interpretation of its results is often not simple nor univocal and the matter is scarcely delved into by literature, thereby users can easily leaded up to a misleading conclusion, especially if the indicator is employed, as often unfortunately it happens, in uncritical manner. In order to plug some cross-ApEn gaps and limits clearly brought out during the experimentation, we developed and applied to the already considered cases a further indicator we called “correspondence index”. The correspondence index is perfectly integrated into the cross-ApEn computational algorithm and it is able to provide, at least for binary data, accurate information about the intensity and the direction of an eventual correlation, even not linear, existing between two different series allowing, in the meanwhile, to detect an eventual condition of independence between the series themselves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In epidemiological work, outcomes are frequently non-normal, sample sizes may be large, and effects are often small. To relate health outcomes to geographic risk factors, fast and powerful methods for fitting spatial models, particularly for non-normal data, are required. We focus on binary outcomes, with the risk surface a smooth function of space. We compare penalized likelihood models, including the penalized quasi-likelihood (PQL) approach, and Bayesian models based on fit, speed, and ease of implementation. A Bayesian model using a spectral basis representation of the spatial surface provides the best tradeoff of sensitivity and specificity in simulations, detecting real spatial features while limiting overfitting and being more efficient computationally than other Bayesian approaches. One of the contributions of this work is further development of this underused representation. The spectral basis model outperforms the penalized likelihood methods, which are prone to overfitting, but is slower to fit and not as easily implemented. Conclusions based on a real dataset of cancer cases in Taiwan are similar albeit less conclusive with respect to comparing the approaches. The success of the spectral basis with binary data and similar results with count data suggest that it may be generally useful in spatial models and more complicated hierarchical models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce a diagnostic test for the mixing distribution in a generalised linear mixed model. The test is based on the difference between the marginal maximum likelihood and conditional maximum likelihood estimates of a subset of the fixed effects in the model. We derive the asymptotic variance of this difference, and propose a test statistic that has a limiting chi-square distribution under the null hypothesis that the mixing distribution is correctly specified. For the important special case of the logistic regression model with random intercepts, we evaluate via simulation the power of the test in finite samples under several alternative distributional forms for the mixing distribution. We illustrate the method by applying it to data from a clinical trial investigating the effects of hormonal contraceptives in women.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sensor networks have been an active research area in the past decade due to the variety of their applications. Many research studies have been conducted to solve the problems underlying the middleware services of sensor networks, such as self-deployment, self-localization, and synchronization. With the provided middleware services, sensor networks have grown into a mature technology to be used as a detection and surveillance paradigm for many real-world applications. The individual sensors are small in size. Thus, they can be deployed in areas with limited space to make unobstructed measurements in locations where the traditional centralized systems would have trouble to reach. However, there are a few physical limitations to sensor networks, which can prevent sensors from performing at their maximum potential. Individual sensors have limited power supply, the wireless band can get very cluttered when multiple sensors try to transmit at the same time. Furthermore, the individual sensors have limited communication range, so the network may not have a 1-hop communication topology and routing can be a problem in many cases. Carefully designed algorithms can alleviate the physical limitations of sensor networks, and allow them to be utilized to their full potential. Graphical models are an intuitive choice for designing sensor network algorithms. This thesis focuses on a classic application in sensor networks, detecting and tracking of targets. It develops feasible inference techniques for sensor networks using statistical graphical model inference, binary sensor detection, events isolation and dynamic clustering. The main strategy is to use only binary data for rough global inferences, and then dynamically form small scale clusters around the target for detailed computations. This framework is then extended to network topology manipulation, so that the framework developed can be applied to tracking in different network topology settings. Finally the system was tested in both simulation and real-world environments. The simulations were performed on various network topologies, from regularly distributed networks to randomly distributed networks. The results show that the algorithm performs well in randomly distributed networks, and hence requires minimum deployment effort. The experiments were carried out in both corridor and open space settings. A in-home falling detection system was simulated with real-world settings, it was setup with 30 bumblebee radars and 30 ultrasonic sensors driven by TI EZ430-RF2500 boards scanning a typical 800 sqft apartment. Bumblebee radars are calibrated to detect the falling of human body, and the two-tier tracking algorithm is used on the ultrasonic sensors to track the location of the elderly people.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In numerous intervention studies and education field trials, random assignment to treatment occurs in clusters rather than at the level of observation. This departure of random assignment of units may be due to logistics, political feasibility, or ecological validity. Data within the same cluster or grouping are often correlated. Application of traditional regression techniques, which assume independence between observations, to clustered data produce consistent parameter estimates. However such estimators are often inefficient as compared to methods which incorporate the clustered nature of the data into the estimation procedure (Neuhaus 1993).1 Multilevel models, also known as random effects or random components models, can be used to account for the clustering of data by estimating higher level, or group, as well as lower level, or individual variation. Designing a study, in which the unit of observation is nested within higher level groupings, requires the determination of sample sizes at each level. This study investigates the design and analysis of various sampling strategies for a 3-level repeated measures design on the parameter estimates when the outcome variable of interest follows a Poisson distribution. ^ Results study suggest that second order PQL estimation produces the least biased estimates in the 3-level multilevel Poisson model followed by first order PQL and then second and first order MQL. The MQL estimates of both fixed and random parameters are generally satisfactory when the level 2 and level 3 variation is less than 0.10. However, as the higher level error variance increases, the MQL estimates become increasingly biased. If convergence of the estimation algorithm is not obtained by PQL procedure and higher level error variance is large, the estimates may be significantly biased. In this case bias correction techniques such as bootstrapping should be considered as an alternative procedure. For larger sample sizes, those structures with 20 or more units sampled at levels with normally distributed random errors produced more stable estimates with less sampling variance than structures with an increased number of level 1 units. For small sample sizes, sampling fewer units at the level with Poisson variation produces less sampling variation, however this criterion is no longer important when sample sizes are large. ^ 1Neuhaus J (1993). “Estimation efficiency and Tests of Covariate Effects with Clustered Binary Data”. Biometrics , 49, 989–996^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Para expresar la magnitud de la identidad genética (similaridad) o su complemento (distancia) entre dos individuos caracterizados molecularmente a través de marcadores del tipo microsatélites (SSR), que son multilocusmultialélicos, es necesario elegir una métrica acorde con la naturaleza multivariada de los datos. Comúnmente, las métricas de distancias genéticas son diseñadas para expresar, en un único número, la diferencia genética entre dos poblaciones y son expresadas como función de la frecuencia alélica poblacional. Dichas métricas pueden también ser utilizadas para calcular la distancia entre perfiles individuales, pero las frecuencias alélicas no son continuas en este caso. Alternativamente, se pueden usar distancias geométricas obtenidas como el complemento del índice de similaridad para datos binarios que indican la presencia/ ausencia de cada alelo en un individuo. El objetivo de este trabajo fue evaluar simultáneamente el desempeño de ambos tipos de métricas para ordenar y clasificar individuos en una base de datos generadas a partir de loci de marcadores microsatélites SSR. Se calcularon 11 métricas de distancias a partir de 17 loci SSR obtenidos desde 17 introducciones de un banco de germoplasma de soja [Glycine max (L.) Merr.]. Se evaluó el consenso de los resultados obtenidos para la clasificación de los 17 perfiles moleculares desde varias métricas. Los resultados sugieren que los diferentes tipos de métricas producen información similar para comparar individuos. No obstante, se realizó una clasificación de las métricas que responden a diferencias entre los núcleos de las expresiones de cálculo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Standard factorial designs sometimes may be inadequate for experiments that aim to estimate a generalized linear model, for example, for describing a binary response in terms of several variables. A method is proposed for finding exact designs for such experiments that uses a criterion allowing for uncertainty in the link function, the linear predictor, or the model parameters, together with a design search. Designs are assessed and compared by simulation of the distribution of efficiencies relative to locally optimal designs over a space of possible models. Exact designs are investigated for two applications, and their advantages over factorial and central composite designs are demonstrated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pharmacodynamics (PD) is the study of the biochemical and physiological effects of drugs. The construction of optimal designs for dose-ranging trials with multiple periods is considered in this paper, where the outcome of the trial (the effect of the drug) is considered to be a binary response: the success or failure of a drug to bring about a particular change in the subject after a given amount of time. The carryover effect of each dose from one period to the next is assumed to be proportional to the direct effect. It is shown for a logistic regression model that the efficiency of optimal parallel (single-period) or crossover (two-period) design is substantially greater than a balanced design. The optimal designs are also shown to be robust to misspecification of the value of the parameters. Finally, the parallel and crossover designs are combined to provide the experimenter with greater flexibility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A visualization plot of a data set of molecular data is a useful tool for gaining insight into a set of molecules. In chemoinformatics, most visualization plots are of molecular descriptors, and the statistical model most often used to produce a visualization is principal component analysis (PCA). This paper takes PCA, together with four other statistical models (NeuroScale, GTM, LTM, and LTM-LIN), and evaluates their ability to produce clustering in visualizations not of molecular descriptors but of molecular fingerprints. Two different tasks are addressed: understanding structural information (particularly combinatorial libraries) and relating structure to activity. The quality of the visualizations is compared both subjectively (by visual inspection) and objectively (with global distance comparisons and local k-nearest-neighbor predictors). On the data sets used to evaluate clustering by structure, LTM is found to perform significantly better than the other models. In particular, the clusters in LTM visualization space are consistent with the relationships between the core scaffolds that define the combinatorial sublibraries. On the data sets used to evaluate clustering by activity, LTM again gives the best performance but by a smaller margin. The results of this paper demonstrate the value of using both a nonlinear projection map and a Bernoulli noise model for modeling binary data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A multistage distillation column in which mass transfer and a reversible chemical reaction occurred simultaneously, has been investigated to formulate a technique by which this process can be analysed or predicted. A transesterification reaction between ethyl alcohol and butyl acetate, catalysed by concentrated sulphuric acid, was selected for the investigation and all the components were analysed on a gas liquid chromatograph. The transesterification reaction kinetics have been studied in a batch reactor for catalyst concentrations of 0.1 - 1.0 weight percent and temperatures between 21.4 and 85.0 °C. The reaction was found to be second order and dependent on the catalyst concentration at a given temperature. The vapour liquid equilibrium data for six binary, four ternary and one quaternary systems are measured at atmospheric pressure using a modified Cathala dynamic equilibrium still. The systems with the exception of ethyl alcohol - butyl alcohol mixtures, were found to be non-ideal. Multicomponent vapour liquid equilibrium compositions were predicted by a computer programme which utilised the Van Laar constants obtained from the binary data sets. Good agreement was obtained between the predicted and experimental quaternary equilibrium vapour compositions. Continuous transesterification experiments were carried out in a six stage sieve plate distillation column. The column was 3" in internal diameter and of unit construction in glass. The plates were 8" apart and had a free area of 7.7%. Both the liquid and vapour streams were analysed. The component conversion was dependent on the boilup rate and the reflux ratio. Because of the presence of the reaction, the concentration of one of the lighter components increased below the feed plate. In the same region a highly developed foam was formed due to the presence of the catalyst. The experimental results were analysed by the solution of a series of simultaneous enthalpy and mass equations. Good agreement was obtained between the experimental and calculated results.