247 resultados para bilinear pairings
Resumo:
Background: Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only.Methods: A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made.Results: The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures.Conclusions: The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants. © 2010 Richter et al; licensee BioMed Central Ltd.
Resumo:
We propose two public-key schemes to achieve “deniable authentication” for the Internet Key Exchange (IKE). Our protocols can be implemented using different concrete mechanisms and we discuss different options; in particular we suggest solutions based on elliptic curve pairings. The protocol designs use the modular construction method of Canetti and Krawczyk which provides the basis for a proof of security. Our schemes can, in some situations, be more efficient than existing IKE protocols as well as having stronger deniability properties.
Resumo:
We introduce a formal model for certificateless authenticated key exchange (CL-AKE) protocols. Contrary to what might be expected, we show that the natural combination of an ID-based AKE protocol with a public key based AKE protocol cannot provide strong security. We provide the first one-round CL-AKE scheme proven secure in the random oracle model. We introduce two variants of the Diffie-Hellman trapdoor the introduced by \cite{DBLP:conf/eurocrypt/CashKS08}. The proposed key agreement scheme is secure as long as each party has at least one uncompromised secret. Thus, our scheme is secure even if the key generation centre learns the ephemeral secrets of both parties.
Resumo:
The most costly operations encountered in pairing computations are those that take place in the full extension field Fpk . At high levels of security, the complexity of operations in Fpk dominates the complexity of the operations that occur in the lower degree subfields. Consequently, full extension field operations have the greatest effect on the runtime of Miller’s algorithm. Many recent optimizations in the literature have focussed on improving the overall operation count by presenting new explicit formulas that reduce the number of subfield operations encountered throughout an iteration of Miller’s algorithm. Unfortunately, almost all of these improvements tend to suffer for larger embedding degrees where the expensive extension field operations far outweigh the operations in the smaller subfields. In this paper, we propose a new way of carrying out Miller’s algorithm that involves new explicit formulas which reduce the number of full extension field operations that occur in an iteration of the Miller loop, resulting in significant speed ups in most practical situations of between 5 and 30 percent.
Resumo:
Research on efficient pairing implementation has focussed on reducing the loop length and on using high-degree twists. Existence of twists of degree larger than 2 is a very restrictive criterion but luckily constructions for pairing-friendly elliptic curves with such twists exist. In fact, Freeman, Scott and Teske showed in their overview paper that often the best known methods of constructing pairing-friendly elliptic curves over fields of large prime characteristic produce curves that admit twists of degree 3, 4 or 6. A few papers have presented explicit formulas for the doubling and the addition step in Miller’s algorithm, but the optimizations were all done for the Tate pairing with degree-2 twists, so the main usage of the high- degree twists remained incompatible with more efficient formulas. In this paper we present efficient formulas for curves with twists of degree 2, 3, 4 or 6. These formulas are significantly faster than their predecessors. We show how these faster formulas can be applied to Tate and ate pairing variants, thereby speeding up all practical suggestions for efficient pairing implementations over fields of large characteristic.
Resumo:
Miller’s algorithm for computing pairings involves perform- ing multiplications between elements that belong to different finite fields. Namely, elements in the full extension field Fpk are multiplied by elements contained in proper subfields F pk/d , and by elements in the base field Fp . We show that significant speedups in pairing computations can be achieved by delaying these “mismatched” multiplications for an optimal number of iterations. Importantly, we show that our technique can be easily integrated into traditional pairing algorithms; implementers can exploit the computational savings herein by applying only minor changes to existing pairing code.
Resumo:
Corporate sponsorship of events contributes significantly to marketing aims, including brand awareness as measured by recall and recognition of sponsor‐event pairings. Unfortunately, resultant advantages accrue disproportionately to brands having a natural or congruent fit with the available sponsorship properties. In three cued‐recall experiments, the effect of articulation of sponsorship fit on memory for sponsor‐event pairings is examined. While congruent sponsors have a natural memory advantage, results demonstrate that memory improvements via articulation are possible for incongruent sponsor‐event pairings. These improvements are, however, affected by the presence of competitor brands and the way in which memory is accessed.
Resumo:
Affect modulates the blink startle reflex in the picture-viewing paradigm, however, the process responsible for reflex modulation during conditional stimuli (CSs) that have acquired valence through affective conditioning remains unclear. In Experiment 1, neutral shapes (CSs) and valenced or neutral pictures (USs) were paired in a forward (CS → US) manner. Pleasantness ratings supported affective learning of positive and negative valence. Post-acquisition, blink reflexes were larger during the pleasant and unpleasant CSs than during the neutral CS. Rather than affect, attention or anticipatory arousal were suggested as sources of startle modulation. Experiment 2 confirmed that affective learning in the picture–picture paradigm was not affected by whether the CS preceded the US. Pleasantness ratings and affective priming revealed similar extents of affective learning following forward, backward or simultaneous pairings of CSs and USs. Experiment 3 utilized a backward conditioning procedure (US → CS) to minimize effects of US anticipation. Again, blink reflexes were larger during CSs paired with valenced USs regardless of US valence implicating attention rather than anticipatory arousal or affect as the process modulating startle in this paradigm.
Resumo:
Advanced composite materials offer remarkable potential in the strengthening of Civil Engineering structures. This research is targeted to provide in depth knowledge and understanding of bond characteristics of advanced and corrosion resistant material carbon fibre reinforced polymer (CFRP) that has a unique design tailor-ability and cost effective nature. The objective of this research is to investigate and compare the bonding mechanism between CFRP strengthened single and double strap steel joints. Investigations have been made in regards to failure mode, ultimate load and effective bond length for CFRP strengthened double and single strap joints. A series of tensile tests were conducted with different bond lengths for both type of joints. The bond behaviour of these specimens was further investigated by using nonlinear finite element analysis. Finally a bilinear relationship of shear stress-slip has been proposed by using the Finite element model for single and double strap joints.
Resumo:
Due to the demand for better and deeper analysis in sports, organizations (both professional teams and broadcasters) are looking to use spatiotemporal data in the form of player tracking information to obtain an advantage over their competitors. However, due to the large volume of data, its unstructured nature, and lack of associated team activity labels (e.g. strategic/tactical), effective and efficient strategies to deal with such data have yet to be deployed. A bottleneck restricting such solutions is the lack of a suitable representation (i.e. ordering of players) which is immune to the potentially infinite number of possible permutations of player orderings, in addition to the high dimensionality of temporal signal (e.g. a game of soccer last for 90 mins). Leveraging a recent method which utilizes a "role-representation", as well as a feature reduction strategy that uses a spatiotemporal bilinear basis model to form a compact spatiotemporal representation. Using this representation, we find the most likely formation patterns of a team associated with match events across nearly 14 hours of continuous player and ball tracking data in soccer. Additionally, we show that we can accurately segment a match into distinct game phases and detect highlights. (i.e. shots, corners, free-kicks, etc) completely automatically using a decision-tree formulation.
Resumo:
Proxy re-encryption (PRE) is a highly useful cryptographic primitive whereby Alice and Bob can endow a proxy with the capacity to change ciphertext recipients from Alice to Bob, without the proxy itself being able to decrypt, thereby providing delegation of decryption authority. Key-private PRE (KP-PRE) specifies an additional level of confidentiality, requiring pseudo-random proxy keys that leak no information on the identity of the delegators and delegatees. In this paper, we propose a CPA-secure PK-PRE scheme in the standard model (which we then transform into a CCA-secure scheme in the random oracle model). Both schemes enjoy highly desirable properties such as uni-directionality and multi-hop delegation. Unlike (the few) prior constructions of PRE and KP-PRE that typically rely on bilinear maps under ad hoc assumptions, security of our construction is based on the hardness of the standard Learning-With-Errors (LWE) problem, itself reducible from worst-case lattice hard problems that are conjectured immune to quantum cryptanalysis, or “post-quantum”. Of independent interest, we further examine the practical hardness of the LWE assumption, using Kannan’s exhaustive search algorithm coupling with pruning techniques. This leads to state-of-the-art parameters not only for our scheme, but also for a number of other primitives based on LWE published the literature.
Resumo:
We construct two efficient Identity-Based Encryption (IBE) systems that admit selective-identity security reductions without random oracles in groups equipped with a bilinear map. Selective-identity secure IBE is a slightly weaker security model than the standard security model for IBE. In this model the adversary must commit ahead of time to the identity that it intends to attack, whereas in an adaptive-identity attack the adversary is allowed to choose this identity adaptively. Our first system—BB1—is based on the well studied decisional bilinear Diffie–Hellman assumption, and extends naturally to systems with hierarchical identities, or HIBE. Our second system—BB2—is based on a stronger assumption which we call the Bilinear Diffie–Hellman Inversion assumption and provides another approach to building IBE systems. Our first system, BB1, is very versatile and well suited for practical applications: the basic hierarchical construction can be efficiently secured against chosen-ciphertext attacks, and further extended to support efficient non-interactive threshold decryption, among others, all without using random oracles. Both systems, BB1 and BB2, can be modified generically to provide “full” IBE security (i.e., against adaptive-identity attacks), either using random oracles, or in the standard model at the expense of a non-polynomial but easy-to-compensate security reduction.
Resumo:
To this day, realizations in the standard-model of (lossy) trapdoor functions from discrete-log-type assumptions require large public key sizes, e.g., about Θ(λ 2) group elements for a reduction from the decisional Diffie-Hellman assumption (where λ is a security parameter). We propose two realizations of lossy trapdoor functions that achieve public key size of only Θ(λ) group elements in bilinear groups, with a reduction from the decisional Bilinear Diffie-Hellman assumption. Our first construction achieves this result at the expense of a long common reference string of Θ(λ 2) elements, albeit reusable in multiple LTDF instantiations. Our second scheme also achieves public keys of size Θ(λ), entirely in the standard model and in particular without any reference string, at the cost of a slightly more involved construction. The main technical novelty, developed for the second scheme, is a compact encoding technique for generating compressed representations of certain sequences of group elements for the public parameters.
Resumo:
Motivated by privacy issues associated with dissemination of signed digital certificates, we define a new type of signature scheme called a ‘Universal Designated-Verifier Signature’ (UDVS). A UDVS scheme can function as a standard publicly-verifiable digital signature but has additional functionality which allows any holder of a signature (not necessarily the signer) to designate the signature to any desired designated-verifier (using the verifier’s public key). Given the designated-signature, the designated-verifier can verify that the message was signed by the signer, but is unable to convince anyone else of this fact. We propose an efficient deterministic UDVS scheme constructed using any bilinear group-pair. Our UDVS scheme functions as a standard Boneh-Lynn-Shacham (BLS) signature when no verifier-designation is performed, and is therefore compatible with the key-generation, signing and verifying algorithms of the BLS scheme. We prove that our UDVS scheme is secure in the sense of our unforgeability and privacy notions for UDVS schemes, under the Bilinear Diffie-Hellman (BDH) assumption for the underlying group-pair, in the random-oracle model. We also demonstrate a general constructive equivalence between a class of unforgeable and unconditionally-private UDVS schemes having unique signatures (which includes the deterministic UDVS schemes) and a class of ID-Based Encryption (IBE) schemes which contains the Boneh-Franklin IBE scheme but not the Cocks IBE scheme.