992 resultados para beta Carotene


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, the antioxidant activity of proteins isolated from jellyfish, Rhopilema esculentum Kishinouye (R. esculentum), was determined by various antioxidant assays, including superoxide anion radical-scavenging, hydroxyl radical-scavenging, total antioxidant activity, reducing power and metal chelating activity. Butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), alpha-tocopherol, vitamin C and mannitol were used as standards in those various antioxidant activities. The crude protein (CP) and the protein fractions isolated by Sephadex chromatography, first peak (FP) and second peak (SP), had very low reductive power and metal chelating abilities compared to EDTA, but they showed strong scavenging effects on the superoxide anion radical, hydroxyl radical and varying total antioxidant activity. FP and SP exhibited stronger scavenging effects on the superoxide anion radical than BHA, BHT or a-tocopherol. The EC50 values of FP and SP were 6.12 and 0.88 mu g/ml, respectively, while values EC50 of BHA, BHT and alpha-tocopherol were 31, 61 and 88 mu g/ml, respectively. CP, FP and SP showed far higher hydroxyl radical-scavenging activities than did vitamin C or mannitol. The EC50 values of CP, FP and SP were 48.76, 45.42 and 1.52 mu g/ml, but EC50 values of vitamin C and mannitol were 1907 and 4536 mu g/ml, respectively. In a beta-carotene-linoleate system, SP and CP showed antioxidant activity, but lower than BHA. Of the three samples, SP had the strongest antioxidant activity. So, SP may have a use as a possible supplement in the food and pharmaceutical industries. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability to adapt to and respond to increases in external osmolarity is an important characteristic that enables bacteria to survive and proliferate in different environmental niches. When challenged with increased osmolarity, due to sodium chloride (NaCl) for example, bacteria elicit a phased response; firstly via uptake of potassium (K+), which is known as the primary response. This primary response is followed by the secondary response which is characterised by the synthesis or uptake of compatible solutes (osmoprotectants). The overall osmotic stress response is much broader however, involving many diverse cellular systems and processes. These ancillary mechanisms are arguably more interesting and give a more complete view of the osmotic stress response. The aim of this thesis was to identify novel genetic loci from the human gut microbiota that confer increased tolerance to osmotic stress using a functional metagenomic approach. Functional metagenomics is a powerful tool that enables the identification of novel genes from as yet uncultured bacteria from diverse environments through cloning, heterologous expression and phenotypic identification of a desired trait. Functional metagenomics does not rely on any previous sequence information to known genes and can therefore enable the discovery of completely novel genes and assign functions to new or known genes. Using a functional metagenomic approach, we have assigned a novel function to previously annotated genes; murB, mazG and galE, as well as a putative brp/blh family beta-carotene 15,15’-monooxygenase. Finally, we report the identification of a completely novel salt tolerance determinant with no current known homologues in the databases. Overall the genes identified originate from diverse taxonomic and phylogenetic groups commonly found in the human gastrointestinal (GI) tract, such as Collinsella and Eggerthella, Akkermansia and Bacteroides from the phyla Actinobacteria, Verrucomicrobia and Bacteroidetes, respectively. In addition, a number of the genes appear to have been acquired via lateral gene transfer and/or encoded on a prophage. To our knowledge, this thesis represents the first investigation to identify novel genes from the human gut microbiota involved in the bacterial osmotic stress response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Earlier studies in adults have indicated that increased oxidative stress may occur in the blood and airways of asthmatic subjects. Therefore the aim of this study was to compare the concentrations of antioxidants and protein carbonyls in bronchoalveolar lavage fluid of clinically stable atopic asthmatic children (AA, n = 78) with our recently published reference intervals for nonasthmatic children (C, n = 124). Additionally, lipid peroxidation products (malondialdehyde) in bronchoalveolar lavage fluid and several antioxidants in plasma were determined. Bronchoalveolar lavage concentrations (median and interquartile range) of ascorbate [AA: 0.433 (0.294-0.678) versus C: 0.418 (0.253-0.646) micromol/L], urate [AA: 0.585 (0.412-0.996) versus C: 0.511 (0.372-0.687) micromol/L], alpha-tocopherol [AA: 0.025 (0.014-0.031) versus C: 0.017 (0.017-0.260) micromol/L], and oxidized proteins as reflected by protein carbonyls [AA: 1.222 (0.970-1.635) versus C: 1.243 (0.813-1.685) nmol/mg protein] were similar in both groups (p > 0.05 in all cases). The concentration of protein carbonyls correlated significantly with the number of eosinophils, mast cells, and macrophages in AA children only. Concentrations of oxidized proteins and lipid peroxidation products (malondialdehyde) correlated significantly in AA children (r = 0.614, n = 11, p = 0.044). Serum concentrations of ascorbate, urate, retinol, alpha-tocopherol, beta-carotene, and lycopene were similar in both groups whereas alpha-carotene was significantly reduced in asthmatics. Overall, increased bronchoalveolar lavage eosinophils indicate ongoing airway inflammation, which may increase oxidatively modified proteins as reflected by increased protein carbonyl concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: The aim was to investigate the association between periodontal health and the serum levels of various antioxidants including carotenoids, retinol and vitamin E in a homogenous group of Western European men.
Materials and Methods: A representative sample of 1258 men aged 60-70 years, drawn from the population of Northern Ireland, was examined between 2001 and 2003. Each participant had six or more teeth, completed a questionnaire and underwent a clinical periodontal examination. Serum lipid-soluble antioxidant levels were measured by high-performance liquid chromatography with diode array detection. Multivariable analysis was carried out using logistic regression with adjustment for possible confounders. Models were constructed using two measures of periodontal status (low- and high-threshold periodontitis) as dependent variables and the fifths of each antioxidant as a predictor variable.
Results: The levels of a- and ß-carotene, ß-cryptoxanthin and zeaxanthin were highly significantly lower in the men with low-threshold periodontitis (p<0.001). These carotenoids were also significantly lower in high-threshold periodontitis. There were no significant differences in the levels of lutein, lycopene, a- and ?-tocopherol or retinol in relation to periodontitis. In fully adjusted models, there was an inverse relationship between a number of carotenoids (a- and ß-carotene and ß-cryptoxanthin) and low-threshold periodontitis. ß-Carotene and ß-cryptoxanthin were the only antioxidants that were associated with an increased risk of high-threshold severe periodontitis. The adjusted odds ratio for high-threshold periodontitis in the lowest fifth relative to the highest fifth of ß-cryptoxanthin was 4.02 (p=0.003).
Conclusion: It is concluded that low serum levels of a number of carotenoids, in particular beta-cryptoxanthin and beta-carotene, were associated with an increased prevalence of periodontitis in this homogenous group of 60-70-year-old Western European men.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many degenerative diseases are associated with increased oxidative stress. Creatine has the potential to act as an indirect and direct antioxidant; however, limited data exist to evaluate the antioxidant capabdities of creatine supplementation within in vivo human systems. This study aimed to investigate the effects of oral creatine supplementation on markers of oxidative stress and antioxidant defenses following exhaustive cycling exercise. Following preliminary testing and two additional familiarization sessions, 18 active males repeated two exhaustive incremental cycling trials (T1 and T2) separated by exactly 7 days. The subjects were assigned, in a double-blind manner, to receive either 20 g of creatine (Cr) or a placebo (P) for the 5 days preceding T2. Breath-by-breath respiratory data and heart rate were continually recorded throughout the exercise protocol and blood samples were obtained at rest (preexercise), at the end of exercise (postexercise), and the day following exercise (post24 h). Serum hypdroperoxide concentrations were elevated at postexercise by 17 +/- 5% above preexercise values (p = 0.030). However, supplementation did not influence lipid peroxidation (serum hypdroperoxide concentrations), resistance of low density lipoprotein to oxidative stress (t(1/2max) LDL oxidation) and plasma concentrations of non-enzymatic antioxidants (retinol, alpha-carotene, beta-carotene, alpha-tocopherol, gamma-tocopherol, lycopene and vitamin Q. Heart rate and oxygen uptake responses to exercise were not affected by supplementation. These findings suggest that short-term creatine supplementation does not enhance non-enzymatic antioxidant defence or protect against lipid peroxidation induced by exhaustive cycling in healthy males.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Whilst clinical deficiency of micronutrients is uncommon in the developed world, a suboptimal intake of certain micronutrients has been linked with an increased risk of chronic diseases such as CVD and cancer. Attention has therefore focused on increasing micronutrient status in order to theoretically reduce chronic disease risk. Increasing micronutrient status can involve a number of approaches: increasing dietary intake of micronutrient-rich foods; food fortification; use of supplements. Observational cohort studies have demonstrated an association between high intakes of micronutrients such as vitamin E, vitamin C, folic acid and beta-carotene, and lower risk of CHD, stroke and cancer at various sites. However, randomised intervention trials of micronutrient supplements have, to date, largely failed to show an improvement in clinical end points. The discordance between data from cohort studies and the results so far available from clinical trials remains to be explained. One reason may be that the complex mixture of micronutrients found, for example, in a diet high in fruit and vegetables may be more effective than large doses of a small number of micronutrients, and therefore that intervention studies that use single micronutrient supplements are unlikely to produce a lowering of disease risk. Studies concentrating on whole foods (e.g. fruit and vegetables) or diet pattern (e.g. Mediterranean diet pattern) may be more effective in demonstrating an effect on clinical end points. The present review will consider the clinical trial evidence for a beneficial effect of micronutrient supplements on health, and review the alternative approaches to the study of dietary intake of micronutrients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have conducted an intervention trial to assess the effects of antioxidants and B-group vitamins on the susceptibility of low-density lipoprotein (LDL) to oxidation. A total of 509 men aged 30-49 from a local workforce were screened for total plasma homocysteine. The 132 selected (homocysteine concentration > or = 8.34 mumol/l) men were randomly assigned, using a factorial design, to one of four groups receiving supplementation with B group vitamins alone (1 mg folic acid, 7.2 mg pyridoxine, 0.02 mg cyanocobalamin), antioxidant vitamins (150 mg ascorbic acid, 67 mg alpha-tocopherol, 9 mg beta-carotene), B vitamins with antioxidant vitamins, or placebo. Intervention was double-blind. A total of 101 men completed the 8-week study. The lag time of LDL isolated ex vivo to oxidation (induced by 2 mumol/l cupric chloride) was increased in the two groups receiving antioxidants whether with (6.88 +/- 1.65 min) or without (8.51 +/- 1.77 min) B-vitamins, compared with placebo (-2.03 +/- 1.50) or B-vitamins alone (-3.34 +/- 1.08) (Mean +/- S.E., P <0.001). Antibodies to malondialdehyde (MDA) modified LDL were also measured, but there were no significant changes in titers of these antibodies in any group of subjects whether receiving antioxidants or not. Contrast analysis showed that there was no interaction between antioxidants and B-group vitamins. This study indicates that while B-group vitamins lower plasma homocysteine they do not have an antioxidant effect. Thus B-group vitamins and antioxidants appear to have separate, independent effects in reducing cardiovascular risk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mild hyperhomocysteinemia is accepted as a risk factor for premature cardiovascular disease. In a population with a high prevalence of cardiovascular disease, we screened a group of clinically healthy working men aged 30-49 y (n = 509) for plasma homocysteine and 5,10-methylene tetrahydrofolate reductase (MTHFR) genotype status. Those with mildly elevated homocysteine concentrations (> or = 8.34 micromol/L) were selected for intervention. In a randomized, factorial-design, controlled trial we assessed the effects of B-group vitamins and antioxidant vitamin supplementation on homocysteine concentrations. The 132 men were randomly assigned to one of four groups: supplementation with B-group vitamins alone (1 mg folic acid, 7.2 mg pyridoxine, and 0.02 mg cyanocobalamin), antioxidant vitamins alone (150 mg ascorbic acid, 67 mg RRR-alpha-tocopherol, and 9 mg beta-carotene), B-group vitamins with antioxidant vitamins, or placebo. Intervention was double-blind. A total of 101 men completed the 8-wk intervention. When homocysteine concentrations were analyzed by group, significant (P <0.001) decreases (32.0% and 30.0%, respectively) were observed in both groups receiving B-group vitamins either with or without antioxidants. The effect of B-group vitamins alone over 8 wk was a reduction in homocysteine concentrations of 27.9% (95% CI: 22.0%, 33.3%; P <0.001) whereas antioxidants alone produced a nonsignificant increase of 5.1% (95% CI: -2.8%, 13.6%; P = 0.21). There was no evidence of any interaction between the two groups of vitamins. The effect of B-group vitamin supplementation seemed to depend on MTHFR genotype. Supplementation with the B-group vitamins with or without antioxidants reduced homocysteine in the men with mildly elevated concentrations, and hence may be effective in reducing cardiovascular risk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied the plasma chain-breaking antioxidants alpha carotene, beta carotene, lycopene, Vitamin A, Vitamin C, Vitamin E and a measure of total antioxidant capacity, TAC, in 79 patients with Alzheimer's disease (AD), 37 patients with vascular dementia (VaD), 18 patients with Parkinson's disease and dementia (PDem), and 58 matching controls, together with 41 patients with Parkinson's disease (PD) and 41 matching controls. Significant reductions in individual antioxidants were observed in all dementia groups. When compared to controls, the following were reduced: Vitamin A in AD (p <0.01) and VaD (p <0.001); Vitamin C in AD (p <0.001), VaD (p <0.001) and PDem (p <0.01); Vitamin E in AD (p <0.01) and VaD (p <0.001); beta carotene in VaD (p = 0.01); lycopene in PDem (p <0.001). Lycopene was also reduced in PDem compared to AD (p <0.001) and VaD (p <0.001). Antioxidant levels in PD were not depleted. No significant change in TAC was seen in any group. The reduction in plasma chain-breaking antioxidants in patients with dementia may reflect an increased free-radical activity, and a common role in cognitive impairment in these conditions. Increased free-radical activity in VaD and PDem could be associated with concomitant AD pathology. Individual antioxidant changes are not reflected in TAC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increased oxidative stress and immune dysfunction are implicated in preeclampsia (PE) and may contribute to the two- to fourfold increase in PE prevalence among women with type 1 diabetes. Prospective measures of fat-soluble vitamins in diabetic pregnancy are therefore of interest.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los fenómenos oxidativos y en particular la oxidación lipídica son uno de los principales responsables de la pérdida de calidad en la carne y en los productos cárnicos. Como consecuencia de estos procesos se generan compuestos que pueden afectar el flavor, color y textura de la carne disminuyendo la aceptabilidad por parte del consumidor y reduciendo su valor nutritivo. Por otro lado, el estrés oxidativo está relacionado con la etiología de diversas enfermedades comunes en nuestra sociedad. Las carnes de pollo y de pavo son particularmente sensibles a los procesos oxidativos debido a su elevada proporción de ácidos grasos poliinsaturados en comparación con otros tipos de carne. La suplementación de antioxidantes en la dieta de determinados animales es una de las estrategias más eficaces para proteger la carne de la oxidación. Otro aspecto que afecta a la calidad y seguridad de la carne es la presencia de residuos en los tejidos animales destinados al consumo humano, una parte de los cuáles puede proceder de la administración de antibióticos. En este trabajo se estudió la eficacia de tres compuestos antioxidantes, alfa-tocoferol, beta-caroteno y licopeno, adicionados en distintas concentraciones y combinaciones a la dieta de pollos y pavos. Para ello se determinó la estabilidad oxidativa de los tejidos musculares de pechuga y muslo mediante el análisis de los valores de TBARS, de las actividades de los enzimas antioxidantes GSHPx, CAT y SOD y desde un punto de vista sensorial. Asimismo, se analizaron las concentraciones de vitamina E presentes en ambos músculos. Por otro lado, se investigó la presencia de residuos del antibiótico enrofloxacina y de su metabolito en los tejidos muscular y hepático de ambas especies después de la administración del fármaco con o sin periodo de retirada. Finalmente, y dada la aparente relación existente entre el metabolismo de determinados antibióticos y los fenómenos oxidativos, se valoró la posible interacción entre el fármaco y la vitamina E suplementada a la dieta. La vitamina E, a dosis de 100 ppm y 200 ppm en pollos y pavos respectivamente, se comportó como un antioxidante eficaz disminuyendo la rancidez de la carne tanto en pechuga como en muslo. La dosis de vitamina E necesaria para conseguir un incremento significativo de la estabilidad oxidativa de la carne varió en función de la especie y de las características bioquímicas del tejido analizado. El beta-caroteno, suplementado en la dieta de pollos y pavos conjuntamente con la vitamina E, no sólo no manifestó propiedades antioxidantes sino que enmascaró la efectividad de la vitamina E. El licopeno, de cuya utilización en nutrición animal no existían estudios publicados anteriormente, no mostró eficacia antioxidante en la carne de pollo a una dosis de 10 ppm. Respecto al análisis de residuos de antibiótico se observó que tras el periodo de retirada del fármaco los niveles residuales de enrofloxacina y su metabolito disminuyeron notablemente. Debe tenerse en cuenta que se apreciaron diferencias en función de la especie y del tejido considerados, estando los residuos en algunos casos por encima de los límites máximos permitidos. Por otro lado, se observó una relación entre la enrofloxacina y la vitamina E suplementada en la dieta que, parecía depender tanto de la dosis de antioxidante como del metabolismo del fármaco. Esta interacción afectó tanto a los niveles de vitamina E como a la presencia de residuos de enrofloxacina en el tejido muscular, resaltando la importancia de no subestimar posibles interacciones entre distintos compuestos presentes en la dieta animal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of cancer in humans and animals is a multistep process. The complex series of cellular and molecular changes participating in cancer development are mediated by a diversity of endogenous and exogenous stimuli. One type of endogenous damage is that arising from intermediates of oxygen (dioxygen) reduction - oxygen-free radicals (OFR), which attacks not only the bases but also the deoxyribosyl backbone of DNA. Thanks to improvements in analytical techniques, a major achievement in the understanding of carcinogenesis in the past two decades has been the identification and quantification of various adducts of OFR with DNA. OFR are also known to attack other cellular components such as lipids, leaving behind reactive species that in turn can couple to DNA bases. Endogenous DNA lesions are genotoxic and induce mutations. The most extensively studied lesion is the formation of 8-OH-dG. This lesion is important because it is relatively easily formed and is mutagenic and therefore is a potential biomarker of carcinogenesis. Mutations that may arise from formation of 8-OH-dG involve GC. TA transversions. In view of these findings, OFR are considered as an important class of carcinogens. The effect of OFR is balanced by the antioxidant action of non-enzymatic antioxidants as well as antioxidant enzymes. Non-enzymatic antioxidants involve vitamin C, vitamin E, carotenoids (CAR), selenium and others. However, under certain conditions, some antioxidants can also exhibit a pro-oxidant mechanism of action. For example, beta-carotene at high concentration and with increased partial pressure of dioxygen is known to behave as a pro-oxidant. Some concerns have also been raised over the potentially deleterious transition metal ion-mediated (iron, copper) pro-oxidant effect of vitamin C. Clinical studies mapping the effect of preventive antioxidants have shown surprisingly little or no effect on cancer incidence. The epidemiological trials together with in vitro experiments suggest that the optimal approach is to reduce endogenous and exogenous sources of oxidative stress, rather than increase intake of anti-oxidants. In this review, we highlight some major achievements in the study of DNA damage caused by OFR and the role in carcinogenesis played by oxidatively damaged DNA. The protective effect of antioxidants against free radicals is also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To determine whether consumption of five portions of fruit and vegetables per day reduces the enhancement of oxidative stress induced by consumption of fish oil. Subjects: A total of 18 free-living healthy smoking volunteers, aged 18-63 y, were recruited by posters and e-mail in The University of Reading, and by leaflets in local shops. Design: A prospective study. Setting: Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, The University of Reading, Whiteknights PO Box 226, Reading RG6 6AP, UK. Intervention: All subjects consumed a daily supplement of 4 x 1 g fish oil capsules for 9 weeks. After 3 weeks, they consumed an additional five portions of fruits and vegetables per day, and then they returned to their normal diet for the last 3 weeks of the study. Fasting blood samples were taken at the ends of weeks 0, 3, 6 and 9. Results: The plasma concentrations of ascorbic acid, lutein, beta-cryptoxanthin, alpha-carotene and beta-carotene all significantly increased when fruit and vegetable intake was enhanced (P<0.05). Plasma concentrations of α-tocopherol, retinol and uric acid did not change significantly during the period of increased fruit and vegetable consumption. Plasma oxidative stability, assessed by the oxygen radical absorbance capacity (ORAC) assay, also increased from weeks 3-6 (P<0.001) but not in association with increases in measured antioxidants. Lag phase before oxidation of low-density lipoprotein (LDL) significantly decreased in the first 3 weeks of the study, reflecting the incorporation of EPA and DHA into LDL (P<0.0001). Subsequent enhanced fruit and vegetable consumption significantly reduced the susceptibility of LDL to oxidation (P<0.005). Conclusion: Fish oil reduced the oxidative stability of plasma and LDL, but the effects were partially offset by the increased consumption of fruit and vegetables.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of mixtures of antioxidants on the oxidation of phospholipids have been investigated in large unilamellar liposomes following initiation by 2,2'-azobis(2-aminopropane) dihydrochloride. The lag phase increased linearly with antioxidant concentration. The lag phases of mixtures containing alpha-tocopherol with ascorbic acid showed synergy between the antioxidants, but mixtures of beta-carotene with cc-tocopherol or ascorbic acid were not synergistic. The liposome system was used to investigate the total antioxidant activity of lipid- and water-soluble extracts from 16 samples of fruits, vegetables, and related food products. The water-soluble extracts caused greater increases in lag phase than the lipid-soluble extracts. The lag phase of liposomes containing the water-soluble extracts from fruits and vegetables increased linearly with the total phenolic concentration, with the continental salad extract having the longest lag phase. The lipid-soluble extract from apples caused the largest increase in lag phase of the lipid-soluble extracts. The lag phases of the lipid-soluble and water-soluble extracts of all fruits and vegetables studied were additive, but no synergy was detected. The lag phase of the liposomes containing both the water-soluble and lipid-soluble extracts varied from 611.5 min for the continental salad extracts to 47.5 min for the cauliflower extracts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study was aimed at determining whether an increase of 5 portions of fruits and vegetables in the form of soups and beverages has a beneficial effect on markers of oxidative stress and cardiovascular disease risk factors. The study was a single blind, randomized, controlled, crossover dietary intervention study. After a 2-wk run-in period with fish oil supplementation, which continued throughout the dietary intervention to increase oxidative stress, the volunteers consumed carotenoid-rich or control vegetable soups and beverages for 4 wk. After a 10-wk wash-out period, the volunteers repeated the above protocol, consuming the other intervention foods. Both test and control interventions significantly increased the % energy from carbohydrates and decreased dietary protein and vitamin B-12 intakes. Compared with the control treatment, consumption of the carotenoid-rich soups and beverages increased dietary carotenoids, vitamin C, alpha-tocopherol, potassium, and folate, and the plasma concentrations of alpha-carotene (362%), beta-carotene (250%) and lycopene (31%) (P < 0.01) and decreased the plasma homocysteine concentration by 8.8% (P < 0.01). The reduction in plasma homocysteine correlated weakly with the increase in dietary folate during the test intervention (r = -0.35, P = 0.04). The plasma antioxidant status and markers of oxidative stress were not affected by treatment. Consumption of fruit and vegetable soups and beverages makes a useful contribution to meeting dietary recommendations for fruit and vegetable consumption.