957 resultados para bacterial pathogenesis
Resumo:
Toll-like receptor 4 (TLR4), the signal-transducing molecule of the LPS receptor complex, plays a fundamental role in the sensing of LPS from gram-negative bacteria. Activation of TLR4 signaling pathways by LPS is a critical upstream event in the pathogenesis of gram-negative sepsis, making TLR4 an attractive target for novel antisepsis therapy. To validate the concept of TLR4-targeted treatment strategies in gram-negative sepsis, we first showed that TLR4(-/-) and myeloid differentiation primary response gene 88 (MyD88)(-/-) mice were fully resistant to Escherichia coli-induced septic shock, whereas TLR2(-/-) and wild-type mice rapidly died of fulminant sepsis. Neutralizing anti-TLR4 antibodies were then generated using a soluble chimeric fusion protein composed of the N-terminal domain of mouse TLR4 (amino acids 1-334) and the Fc portion of human IgG1. Anti-TLR4 antibodies inhibited intracellular signaling, markedly reduced cytokine production, and protected mice from lethal endotoxic shock and E. coli sepsis when administered in a prophylactic and therapeutic manner up to 13 h after the onset of bacterial sepsis. These experimental data provide strong support for the concept of TLR4-targeted therapy for gram-negative sepsis.
Resumo:
BACKGROUND: It has been hypothesized that bacterial biofilms on breast implants may cause chronic inflammation leading to capsular contracture. The association between bacterial biofilms of removed implants and capsular contracture was investigated. METHODS: Breast implants explanted between 2006 and 2010 at five participating centres for plastic and reconstructive surgery were investigated by sonication. Bacterial cultures derived from sonication were correlated with patient, surgical and implant characteristics, and the degree of capsular contracture. RESULTS: The study included 121 breast implants from 84 patients, of which 119 originated from women and two from men undergoing gender reassignment. Some 50 breast prostheses were implanted for reconstruction, 48 for aesthetic reasons and 23 implants were used as temporary expander devices. The median indwelling time was 4·0 (range 0·1-32) years for permanent implants and 3 (range 1-6) months for temporary devices. Excluding nine implants with clinical signs of infection, sonication cultures were positive in 40 (45 per cent) of 89 permanent implants and in 12 (52 per cent) of 23 temporary devices. Analysis of permanent implants showed that a positive bacterial culture after sonication correlated with the degree of capsular contracture: Baker I, two of 11 implants; Baker II, two of ten; Baker III, nine of 23; and Baker IV, 27 of 45 (P < 0·001). The most frequent organisms were Propionibacterium acnes (25 implants) and coagulase-negative staphylococci (21). CONCLUSION: Sonication cultures correlated with the degree of capsular contracture, indicating the potential causative role of bacterial biofilms in the pathogenesis of capsular contracture. Registration number: NCT01138891 (http://www.clinicaltrials.gov).
Resumo:
The pathogenic role of staphylococcal coagulase and clumping factor was investigated in the rat model of endocarditis. The coagulase-producing and clumping factor-producing parent strain Staphylococcus aureus Newman and a series of mutants defective in either coagulase, clumping factor, or both were tested for their ability (i) to attach in vitro to either rat fibrinogen or platelet-fibrin clots and (ii) to produce endocarditis in rats with catheter-induced aortic vegetations. In vitro, the clumping factor-defective mutants were up to 100 times less able than the wild type strain to attach to fibrinogen and also significantly less adherent than the parents to platelet-fibrin clots. Coagulase-defective mutants, in contrast, were not altered in their in vitro adherence phenotype. The rate of in vivo infection was inoculum dependent. Clumping factor-defective mutants produced ca. 50% less endocarditis than the parent organisms when injected at inoculum sizes infecting, respectively, 40 and 80% (ID40 and ID80, respectively) of rats with the wild-type strain. This was a trend at the ID40 but was statistically significant at the ID80 (P < 0.05). Coagulase-defective bacteria were not affected in their infectivity. Complementation of a clumping factor-defective mutant with a copy of the wild-type clumping factor gene restored both its in vitro adherence and its in vivo infectivity. These results show that clumping factor plays a specific role in the pathogenesis of S. aureus endocarditis. Nevertheless, the rate of endocarditis with clumping factor-defective mutants increased with larger inocula, indicating the contribution of additional pathogenic determinants in the infective process.
Resumo:
Although streptococcal and S. aureus IE share the same primary site of infection, their pathogenesis and clinical evolution present several major differences. Streptococci adhere to cardiac valves with pre-existing endothelial lesions. In contrast, S. aureus can colonize either damaged endothelium or invade physically intact endothelial cells. These interactions are mediated by multiple surface adhesins, some of which have been only partially characterized. Streptococci produce surface glucans (gtf and ftf), ECM adhesins (e.g., fibronectin-binding proteins, FimA), and platelet aggregating factors (phase I and phase II antigens, pblA, pblB, and pblT), all of which have been.
Resumo:
Since routine eubacterial 16S rRNA PCR does not amplify members of the Chlamydiales order, we tested all samples received in our laboratory during a 10 months period using a pan-Chlamydiales real-time PCR. 3 of 107 samples (2.8%) revealed to be positive, suggesting a role of some Chlamydiales in the pathogenesis of chronic bronchial stenosis or bronchial stenosis superinfection and as agents of orthopaedic prosthesis infections.
Resumo:
The aim of this thesis was to develop new herpes simplex virus (HSV) vectors for gene therapy of experimental autoimmune encephalomyelitis (EAE), the principal model of multiple sclerosis (MS), and to study the pathogenesis of wild-type HSV-1 and HSV-1 vectors in vivo. By introducing potential immunomodulatory factors into mice with EAE we strived to develop therapies and possibly find molecules improving recovery from EAE. We aimed at altering the immune response by inducing favorable Th2-type cytokines, thus shifting the immune response from a Th1- or a Th17-response. Our HSV vector expressing interleukin (IL)-5 modulated the cytokine responses, decreased inflammation and alleviated EAE. The use of a novel method, bacterial artificial chromosome (BAC), for engineering recombinant HSV facilitated the construction of a new vector expressing leukemia inhibitory factor (LIF). LIF is a neurotropic cytokine with broad functions in the central nervous system (CNS). LIF promotes oligodendrocyte maturation and decreases demyelination and oligodendrocyte loss. The BAC-derived HSV-LIF vector alleviated the clinical symptoms, induced a higher number of oligodendrocytes and modulated T cell responses. By administering HSV via different infection routes, e.g. peripherally via the nose or eye, or intracranially to the brain, the effect of the immune response on HSV spread at different points of the natural infection route was studied. The intranasal infection was an effective delivery route of HSV to the trigeminal ganglion and CNS, whereas corneal infection displayed limited spread. The corneal and intranasal infections induced different peripheral immune responses, which might explain the observed differences in viral spread.
Resumo:
Infections with Salmonella serotypes are a major cause of food-borne diseases worldwide. Animal models other than the mouse have been employed for the study of nontyphoidal Salmonella infections because the murine model is not suitable for the study of Salmonella-induced diarrhea. The microbe has developed mechanisms to exploit the host cell machinery to its own purpose. Bacterial proteins delivered directly into the host cell cytosol cause cytoskeletal changes and interfere with host cell signaling pathways, which ultimately enhance disease manifestation. Recently, marked advances have been made in our understanding of the molecular interactions between Salmonella serotypes and their hosts. Here, we discuss the molecular basis of the pathogenesis of Salmonella-induced enteritis.
Resumo:
Bacterial pathogens and symbionts must suppress or negate host innate immunity. However, pathogens release conserved oligomeric and polymeric molecules or MAMPs (Microbial Associated Molecular Patterns), which elicit host defenses [1], [2] and [3]. Extracellular polysaccharides (EPSs) are key virulence factors in plant and animal pathogenesis, but their precise function in establishing basic compatibility remains unclear [4], [5], [6] and [7]. Here, we show that EPSs suppress MAMP-induced signaling in plants through their polyanionic nature [4] and consequent ability to chelate divalent calcium ions [8]. In plants, Ca2+ ion influx to the cytosol from the apoplast (where bacteria multiply [4], [5] and [9]) is a prerequisite for activation of myriad defenses by MAMPs [10]. We show that EPSs from diverse plant and animal pathogens and symbionts bind calcium. EPS-defective mutants or pure MAMPs, such as the flagellin peptide flg22, elicit calcium influx, expression of host defense genes, and downstream resistance. Furthermore, EPSs, produced by wild-type strains or purified, suppress induced responses but do not block flg22-receptor binding in Arabidopsis cells. EPS production was confirmed in planta, and the amounts in bacterial biofilms greatly exceed those required for binding of apoplastic calcium. These data reveal a novel, fundamental role for bacterial EPS in disease establishment, encouraging novel control strategies.
Resumo:
To evaluate the checkerboard DNA-DNA hybridization method for detection and quantitation of bacteria from the internal parts of dental implants and to compare bacterial leakage from implants connected either to cast or to pre-machined abutments. Nine plastic abutments cast in a Ni-Cr alloy and nine pre-machined Co-Cr alloy abutments with plastic sleeves cast in Ni-Cr were connected to Branemark-compatible implants. A group of nine implants was used as control. The implants were inoculated with 3 mu l of a solution containing 10(8) cells/ml of Streptococcus sobrinus. Bacterial samples were immediately collected from the control implants while assemblies were completely immersed in 5 ml of sterile Tripty Soy Broth (TSB) medium. After 14 days of anaerobic incubation, occurrence of leakage at the implant-abutment interface was evaluated by assessing contamination of the TSB medium. Internal contamination of the implants was evaluated with the checkerboard DNA-DNA hybridization method. DNA-DNA hybridization was sensitive enough to detect and quantify the microorganism from the internal parts of the implants. No differences in leakage and in internal contamination were found between cast and pre-machined abutments. Bacterial scores in the control group were significantly higher than in the other groups (P < 0.05). Bacterial leakage through the implant-abutment interface does not significantly differ when cast or pre-machined abutments are used. The checkerboard DNA-DNA hybridization technique is suitable for the evaluation of the internal contamination of dental implants although further studies are necessary to validate the use of computational methods for the improvement of the test accuracy. To cite this article:do Nascimento C, Barbosa RES, Issa JPM, Watanabe E, Ito IY, Albuquerque Junior RF. Use of checkerboard DNA-DNA hybridization to evaluate the internal contamination of dental implants and comparison of bacterial leakage with cast or pre-machined abutments.Clin. Oral Impl. Res. 20, 2009; 571-577.doi: 10.1111/j.1600-0501.2008.01663.x.
Resumo:
In recent clinical studies, contamination of the inner parts of dental implants through bacterial penetration along the implant components has been observed. The aim of the present in-vitro study was to investigate leakage of Fusobacterium. nucleatum through the interface between implants and premachined or cast abutments. Both premachined (n = 10) and cast (n = 10) implant abutment assemblies were inoculated with 3.0 mu L of microbial inoculum. The assemblies were completely immersed in 5.0 mL of tryptic soy broth culture medium to observe leakage at the implant-abutment interface after 14 days of anaerobic incubation. Bacterial growth in the medium, indicative of microbial leakage, was found only in 1 out of 9 samples (11.1%) in each group. Both premachined and cast abutments connected to external hexagonal implants provide low percentages of bacterial leakage through the interface in in vitro unloaded conditions if the manufacturer`s instructions and casting procedures are properly followed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Enterococcus faecium has emerged as one of the most important pathogens in healthcare-associated infections worldwide due to its intrinsic and acquired resistance to many antibiotics, including vancomycin. Antimicrobial photodynamic therapy (aPDT) is an alternative therapeutic platform that is currently under investigation for the control and treatment of infections. PDT is based on the use of photoactive dye molecules, widely known as photosensitizer (PS). PS, upon irradiation with visible light, produces reactive oxygen species that can destroy lipids and proteins causing cell death. We employed Galleria mellonella (the greater wax moth) caterpillar fatally infected with E. faecium to develop an invertebrate host model system that can be used to study the antimicrobial PDT (alone or combined with antibiotics). In the establishment of infection by E. faecium in G. mellonella, we found that the G. mellonella death rate was dependent on the number of bacterial cells injected into the insect hemocoel and all E. faecium strains tested were capable of infecting and killing G. mellonella. Antibiotic treatment with ampicillin, gentamicin or the combination of ampicillin and gentamicin prolonged caterpillar survival infected by E. faecium (P = 0.0003, P = 0.0001 and P = 0.0001, respectively). In the study of antimicrobial PDT, we verified that methylene blue (MB) injected into the insect followed by whole body illumination prolonged the caterpillar survival (P = 0.0192). Interestingly, combination therapy of larvae infected with vancomycin-resistant E. faecium, with antimicrobial PDT followed by vancomycin, significantly prolonged the survival of the caterpillars when compared to either antimicrobial PDT (P = 0.0095) or vancomycin treatment alone (P = 0.0025), suggesting that the aPDT made the vancomycin resistant E. faecium strain more susceptible to vancomycin action. In summary, G. mellonella provides an invertebrate model host to study the antimicrobial PDT and to explore combinatorial aPDT-based treatments.
Resumo:
Neisseria meningitidis, the leading cause of bacterial meningitis, can adapt to different host niches during human infection. Both transcriptional and post-transcriptional regulatory networks have been identified as playing a crucial role for bacterial stress responses and virulence. We investigated the N. meningitidis transcriptional landscape both by microarray and by RNA sequencing (RNAseq). Microarray analysis of N. meningitidis grown in the presence or absence of glucose allowed us to identify genes regulated by carbon source availability. In particular, we identified a glucose-responsive hexR-like transcriptional regulator in N. meningitidis. Deletion analysis showed that the hexR gene is accountable for a subset of the glucose-responsive regulation, and in vitro assays with the purified protein showed that HexR binds to the promoters of the central metabolic operons of meningococcus, by targeting a DNA region overlapping putative regulatory sequences. Our results indicate that HexR coordinates the central metabolism of meningococcus in response to the availability of glucose, and N. meningitidis strains lacking the hexR gene are also deficient in establishing successful bacteremia in a mouse model of infection. In parallel, RNAseq analysis of N. meningitidis cultured under standard or iron-limiting in vitro growth conditions allowed us to identify novel small non-coding RNAs (sRNAs) potentially involved in N. meningitidis regulatory networks. Manual curation of the RNAseq data generated a list of 51 sRNAs, 8 of which were validated by Northern blotting. Deletion of selected sRNAs caused attenuation of N. meningitidis infection in a murine model, leading to the identification of the first sRNAs influencing meningococcal bacteraemia. Furthermore, we describe the identification and initial characterization of a novel sRNA unique to meningococcus, closely associated to genes relevant for the intracellular survival of pathogenic Neisseriae. Taken together, our findings could help unravel the regulation of N. meningitidis adaptation to the host environment and its implications for pathogenesis.
Resumo:
Clostridium perfringens type C causes fatal necrotizing enteritis in different mammalian hosts, most commonly in newborn piglets. Human cases are rare, but the disease, also called pigbel, was endemic in the Highlands of Papua New Guinea. Lesions in piglets and humans are very similar and characterized by segmental necro-hemorrhagic enteritis in acute cases and fibrino-necrotizing enteritis in subacute cases. Histologically, deep mucosal necrosis accompanied by vascular thrombosis and necrosis was consistently reported in naturally affected pigs and humans. This suggests common pathogenetic mechanisms. Previous in vitro studies using primary porcine aortic endothelial cells suggested that beta-toxin (CPB) induced endothelial damage contributes to the pathogenesis of C. perfringens type C enteritis in pigs. In the present study we investigated toxic effects of CPB on cultured primary human macro- and microvascular endothelial cells. In vitro, these cells were highly sensitive to CPB and reacted with similar cytopathic and cytotoxic effects as porcine endothelial cells. Our results indicate that porcine and human cell culture based in vitro models represent valuable tools to investigate the pathogenesis of this bacterial disease in animals and humans.