908 resultados para average complexity
Resumo:
CFO and I/Q mismatch could cause significant performance degradation to OFDM systems. Their estimation and compensation are generally difficult as they are entangled in the received signal. In this paper, we propose some low-complexity estimation and compensation schemes in the receiver, which are robust to various CFO and I/Q mismatch values although the performance is slightly degraded for very small CFO. These schemes consist of three steps: forming a cosine estimator free of I/Q mismatch interference, estimating I/Q mismatch using the estimated cosine value, and forming a sine estimator using samples after I/Q mismatch compensation. These estimators are based on the perception that an estimate of cosine serves much better as the basis for I/Q mismatch estimation than the estimate of CFO derived from the cosine function. Simulation results show that the proposed schemes can improve system performance significantly, and they are robust to CFO and I/Q mismatch.
Resumo:
New product development projects are experiencing increasing internal and external project complexity. Complexity leadership theory proposes that external complexity requires adaptive and enabling leadership, which facilitates opportunity recognition (OR). We ask whether internal complexity also requires OR for increased adaptability. We extend a model of EO and OR to conclude that internal complexity may require more careful OR. This means that leaders of technically or structurally complex projects need to evaluate opportunities more carefully than those in projects with external or technological complexity.
Resumo:
The importance of agriculture in many countries has tended to reduce as their economies move from a resource base to a manufacturing industry base. Although the level of agricultural production in first world countries has increased over the past two decades, this increase has generally been at a less significant rate compared to other sectors of the economies. Despite this increase in secondary and high technology industries, developed countries have continued to encourage and support their agricultural industries. This support has been through both tariffs and price support. Following pressure from developing economies, particularly through the World Trade Organisation (WTO), GATT Uruguay round and the Cairns Group developed countries are now in various stages of winding back or de-coupling agricultural support within their economies. A major concern of farmers in protected agricultural markets is the impact of a free market trade in agricultural commodities on farm incomes, profitability and land values. This paper will analyse both the capital and income performance of the NSW rural land market over the period 1990-1999. This analysis will be based on several rural land use classifications and will compare the total return from rural properties based on the farm income generated by both the average farmer and those farmers considered to be in the top 20% of the various land use areas. The analysis will provide a comprehensive overview of rural production in a free trade economy.
Resumo:
There is increasing agreement that understanding complexity is important for project management because of difficulties associated with decision-making and goal attainment which appear to stem from complexity. However the current operational definitions of complex projects, based upon size and budget, have been challenged and questions have been raised about how complexity can be measured in a robust manner that takes account of structural, dynamic and interaction elements. Thematic analysis of data from 25 in-depth interviews of project managers involved with complex projects, together with an exploration of the literature reveals a wide range of factors that may contribute to project complexity. We argue that these factors contributing to project complexity may define in terms of dimensions, or source characteristics, which are in turn subject to a range of severity factors. In addition to investigating definitions and models of complexity from the literature and in the field, this study also explores the problematic issues of ‘measuring’ or assessing complexity. A research agenda is proposed to further the investigation of phenomena reported in this initial study.
Resumo:
While Business Process Management (BPM) is an established discipline, the increased adoption of BPM technology in recent years has introduced new challenges. One challenge concerns dealing with process model complexity in order to improve the understanding of a process model by stakeholders and process analysts. Features for dealing with this complexity can be classified in two categories: 1) those that are solely concerned with the appearance of the model, and 2) those that in essence change the structure of the model. In this paper we focus on the former category and present a collection of patterns that generalize and conceptualize various existing features. The paper concludes with a detailed analysis of the degree of support of a number of state-of-the-art languages and language implementations for these patterns.
Resumo:
The effects of particulate matter on environment and public health have been widely studied in recent years. A number of studies in the medical field have tried to identify the specific effect on human health of particulate exposure, but agreement amongst these studies on the relative importance of the particles’ size and its origin with respect to health effects is still lacking. Nevertheless, air quality standards are moving, as the epidemiological attention, towards greater focus on the smaller particles. Current air quality standards only regulate the mass of particulate matter less than 10 μm in aerodynamic diameter (PM10) and less than 2.5 μm (PM2.5). The most reliable method used in measuring Total Suspended Particles (TSP), PM10, PM2.5 and PM1 is the gravimetric method since it directly measures PM concentration, guaranteeing an effective traceability to international standards. This technique however, neglects the possibility to correlate short term intra-day variations of atmospheric parameters that can influence ambient particle concentration and size distribution (emission strengths of particle sources, temperature, relative humidity, wind direction and speed and mixing height) as well as human activity patterns that may also vary over time periods considerably shorter than 24 hours. A continuous method to measure the number size distribution and total number concentration in the range 0.014 – 20 μm is the tandem system constituted by a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS). In this paper, an uncertainty budget model of the measurement of airborne particle number, surface area and mass size distributions is proposed and applied for several typical aerosol size distributions. The estimation of such an uncertainty budget presents several difficulties due to i) the complexity of the measurement chain, ii) the fact that SMPS and APS can properly guarantee the traceability to the International System of Measurements only in terms of number concentration. In fact, the surface area and mass concentration must be estimated on the basis of separately determined average density and particle morphology. Keywords: SMPS-APS tandem system, gravimetric reference method, uncertainty budget, ultrafine particles.
Resumo:
Unmanned Aerial Vehicles (UAVs) are emerging as an ideal platform for a wide range of civil applications such as disaster monitoring, atmospheric observation and outback delivery. However, the operation of UAVs is currently restricted to specially segregated regions of airspace outside of the National Airspace System (NAS). Mission Flight Planning (MFP) is an integral part of UAV operation that addresses some of the requirements (such as safety and the rules of the air) of integrating UAVs in the NAS. Automated MFP is a key enabler for a number of UAV operating scenarios as it aids in increasing the level of onboard autonomy. For example, onboard MFP is required to ensure continued conformance with the NAS integration requirements when there is an outage in the communications link. MFP is a motion planning task concerned with finding a path between a designated start waypoint and goal waypoint. This path is described with a sequence of 4 Dimensional (4D) waypoints (three spatial and one time dimension) or equivalently with a sequence of trajectory segments (or tracks). It is necessary to consider the time dimension as the UAV operates in a dynamic environment. Existing methods for generic motion planning, UAV motion planning and general vehicle motion planning cannot adequately address the requirements of MFP. The flight plan needs to optimise for multiple decision objectives including mission safety objectives, the rules of the air and mission efficiency objectives. Online (in-flight) replanning capability is needed as the UAV operates in a large, dynamic and uncertain outdoor environment. This thesis derives a multi-objective 4D search algorithm entitled Multi- Step A* (MSA*) based on the seminal A* search algorithm. MSA* is proven to find the optimal (least cost) path given a variable successor operator (which enables arbitrary track angle and track velocity resolution). Furthermore, it is shown to be of comparable complexity to multi-objective, vector neighbourhood based A* (Vector A*, an extension of A*). A variable successor operator enables the imposition of a multi-resolution lattice structure on the search space (which results in fewer search nodes). Unlike cell decomposition based methods, soundness is guaranteed with multi-resolution MSA*. MSA* is demonstrated through Monte Carlo simulations to be computationally efficient. It is shown that multi-resolution, lattice based MSA* finds paths of equivalent cost (less than 0.5% difference) to Vector A* (the benchmark) in a third of the computation time (on average). This is the first contribution of the research. The second contribution is the discovery of the additive consistency property for planning with multiple decision objectives. Additive consistency ensures that the planner is not biased (which results in a suboptimal path) by ensuring that the cost of traversing a track using one step equals that of traversing the same track using multiple steps. MSA* mitigates uncertainty through online replanning, Multi-Criteria Decision Making (MCDM) and tolerance. Each trajectory segment is modeled with a cell sequence that completely encloses the trajectory segment. The tolerance, measured as the minimum distance between the track and cell boundaries, is the third major contribution. Even though MSA* is demonstrated for UAV MFP, it is extensible to other 4D vehicle motion planning applications. Finally, the research proposes a self-scheduling replanning architecture for MFP. This architecture replicates the decision strategies of human experts to meet the time constraints of online replanning. Based on a feedback loop, the proposed architecture switches between fast, near-optimal planning and optimal planning to minimise the need for hold manoeuvres. The derived MFP framework is original and shown, through extensive verification and validation, to satisfy the requirements of UAV MFP. As MFP is an enabling factor for operation of UAVs in the NAS, the presented work is both original and significant.
Resumo:
Successful product innovation and the ability of companies to continuously improve their innovation processes are rapidly becoming essential requirements for competitive advantage and long-term growth in both manufacturing and service industries. It is now recognized that companies must develop innovation capabilities across all stages of the product development, manufacture, and distribution cycle. These Continuous Product Innovation (CPI) capabilities are closely associated with a company’s knowledge management systems and processes. Companies must develop mechanisms to continuously improve these capabilities over time. Using results of an international survey on CPI practices, sets of companies are identified by similarities in specific contingencies related to their complexity of product, process, technological, and customer interface. Differences between the learning behaviors found present in the company groups and in the levers used to develop and support these behaviors are identified and discussed. This paper also discusses appropriate mechanisms for firms with similar complexities, and some approaches they can use to improve their organizational learning and product innovation.
Resumo:
Principal Topic: Project structures are often created by entrepreneurs and large corporate organizations to develop new products. Since new product development projects (NPDP) are more often situated within a larger organization, intrapreneurship or corporate entrepreneurship plays an important role in bringing these projects to fruition. Since NPDP often involves the development of a new product using immature technology, we describe development of an immature technology. The Joint Strike Fighter (JSF) F-35 aircraft is being developed by the U.S. Department of Defense and eight allied nations. In 2001 Lockheed Martin won a $19 billion contract to develop an affordable, stealthy and supersonic all-weather strike fighter designed to replace a wide range of aging fighter aircraft. In this research we define a complex project as one that demonstrates a number of sources of uncertainty to a degree, or level of severity, that makes it extremely difficult to predict project outcomes, to control or manage project (Remington & Zolin, Forthcoming). Project complexity has been conceptualized by Remington and Pollock (2007) in terms of four major sources of complexity; temporal, directional, structural and technological complexity (See Figure 1). Temporal complexity exists when projects experience significant environmental change outside the direct influence or control of the project. The Global Economic Crisis of 2008 - 2009 is a good example of the type of environmental change that can make a project complex as, for example in the JSF project, where project managers attempt to respond to changes in interest rates, international currency exchange rates and commodity prices etc. Directional complexity exists in a project where stakeholders' goals are unclear or undefined, where progress is hindered by unknown political agendas, or where stakeholders disagree or misunderstand project goals. In the JSF project all the services and all non countries have to agree to the specifications of the three variants of the aircraft; Conventional Take Off and Landing (CTOL), Short Take Off/Vertical Landing (STOVL) and the Carrier Variant (CV). Because the Navy requires a plane that can take off and land on an aircraft carrier, that required a special variant of the aircraft design, adding complexity to the project. Technical complexity occurs in a project using technology that is immature or where design characteristics are unknown or untried. Developing a plane that can take off on a very short runway and land vertically created may highly interdependent technological challenges to correctly locate, direct and balance the lift fans, modulate the airflow and provide equivalent amount of thrust from the downward vectored rear exhaust to lift the aircraft and at the same time control engine temperatures. These technological challenges make costing and scheduling equally challenging. Structural complexity in a project comes from the sheer numbers of elements such as the number of people, teams or organizations involved, ambiguity regarding the elements, and the massive degree of interconnectedness between them. While Lockheed Martin is the prime contractor, they are assisted in major aspects of the JSF development by Northrop Grumman, BAE Systems, Pratt & Whitney and GE/Rolls-Royce Fighter Engineer Team and innumerable subcontractors. In addition to identifying opportunities to achieve project goals, complex projects also need to identify and exploit opportunities to increase agility in response to changing stakeholder demands or to reduce project risks. Complexity Leadership Theory contends that in complex environments adaptive and enabling leadership are needed (Uhl-Bien, Marion and McKelvey, 2007). Adaptive leadership facilitates creativity, learning and adaptability, while enabling leadership handles the conflicts that inevitably arise between adaptive leadership and traditional administrative leadership (Uhl-Bien and Marion, 2007). Hence, adaptive leadership involves the recognition and opportunities to adapt, while and enabling leadership involves the exploitation of these opportunities. Our research questions revolve around the type or source of complexity and its relationship to opportunity recognition and exploitation. For example, is it only external environmental complexity that creates the need for the entrepreneurial behaviours, such as opportunity recognition and opportunity exploitation? Do the internal dimensions of project complexity, such as technological and structural complexity, also create the need for opportunity recognition and opportunity exploitation? The Kropp, Zolin and Lindsay model (2009) describes a relationship between entrepreneurial orientation (EO), opportunity recognition (OR), and opportunity exploitation (OX) in complex projects, with environmental and organizational contextual variables as moderators. We extend their model by defining the affects of external complexity and internal complexity on OR and OX. ---------- Methodology/Key Propositions: When the environment complex EO is more likely to result in OR because project members will be actively looking for solutions to problems created by environmental change. But in projects that are technologically or structurally complex project leaders and members may try to make the minimum changes possible to reduce the risk of creating new problems due to delays or schedule changes. In projects with environmental or technological complexity project leaders who encourage the innovativeness dimension of EO will increase OR in complex projects. But projects with technical or structural complexity innovativeness will not necessarily result in the recognition and exploitation of opportunities due to the over-riding importance of maintaining stability in the highly intricate and interconnected project structure. We propose that in projects with environmental complexity creating the need for change and innovation project leaders, who are willing to accept and manage risk, are more likely to identify opportunities to increase project effectiveness and efficiency. In contrast in projects with internal complexity a much higher willingness to accept risk will be necessary to trigger opportunity recognition. In structurally complex projects we predict it will be less likely to find a relationship between risk taking and OP. When the environment is complex, and a project has autonomy, they will be motivated to execute opportunities to improve the project's performance. In contrast, when the project has high internal complexity, they will be more cautious in execution. When a project experiences high competitive aggressiveness and their environment is complex, project leaders will be motivated to execute opportunities to improve the project's performance. In contrast, when the project has high internal complexity, they will be more cautious in execution. This paper reports the first stage of a three year study into the behaviours of managers, leaders and team members of complex projects. We conduct a qualitative study involving a Group Discussion with experienced project leaders. The objective is to determine how leaders of large and potentially complex projects perceive that external and internal complexity will influence the affects of EO on OR. ---------- Results and Implications: These results will help identify and distinguish the impact of external and internal complexity on entrepreneurial behaviours in NPDP. Project managers will be better able to quickly decide how and when to respond to changes in the environment and internal project events.
Resumo:
As a result of the growing adoption of Business Process Management (BPM) technology different stakeholders need to understand and agree upon the process models that are used to configure BPM systems. However, BPM users have problems dealing with the complexity of such models. Therefore, the challenge is to improve the comprehension of process models. While a substantial amount of literature is devoted to this topic, there is no overview of the various mechanisms that exist to deal with managing complexity in (large) process models. It is thus hard to obtain comparative insight into the degree of support offered for various complexity reducing mechanisms by state-of-the-art languages and tools. This paper focuses on complexity reduction mechanisms that affect the abstract syntax of a process model, i.e. the structure of a process model. These mechanisms are captured as patterns, so that they can be described in their most general form and in a language- and tool-independent manner. The paper concludes with a comparative overview of the degree of support for these patterns offered by state-of-the-art languages and language implementations.
Resumo:
In this chapter we propose clipping with amplitude and phase corrections to reduce the peak-to-average power ratio (PAR) of orthogonal frequency division multiplexed (OFDM) signals in high-speed wireless local area networks defined in IEEE 802.11a physical layer. The proposed techniques can be implemented with a small modification at the transmitter and the receiver remains standard compliant. PAR reduction as much as 4dB can be achieved by selecting a suitable clipping ratio and a correction factor depending on the constellation used. Out of band noise (OBN) is also reduced.
Resumo:
Parallel combinatory orthogonal frequency division multiplexing (PC-OFDM yields lower maximum peak-to-average power ratio (PAR), high bandwidth efficiency and lower bit error rate (BER) on Gaussian channels compared to OFDM systems. However, PC-OFDM does not improve the statistics of PAR significantly. In this chapter, the use of a set of fixed permutations to improve the statistics of the PAR of a PC-OFDM signal is presented. For this technique, interleavers are used to produce K-1 permuted sequences from the same information sequence. The sequence with the lowest PAR, among K sequences is chosen for the transmission. The PAR of a PC-OFDM signal can be further reduced by 3-4 dB by this technique. Mathematical expressions for the complementary cumulative density function (CCDF)of PAR of PC-OFDM signal and interleaved PC-OFDM signal are also presented.
Resumo:
The present paper motivates the study of mind change complexity for learning minimal models of length-bounded logic programs. It establishes ordinal mind change complexity bounds for learnability of these classes both from positive facts and from positive and negative facts. Building on Angluin’s notion of finite thickness and Wright’s work on finite elasticity, Shinohara defined the property of bounded finite thickness to give a sufficient condition for learnability of indexed families of computable languages from positive data. This paper shows that an effective version of Shinohara’s notion of bounded finite thickness gives sufficient conditions for learnability with ordinal mind change bound, both in the context of learnability from positive data and for learnability from complete (both positive and negative) data. Let Omega be a notation for the first limit ordinal. Then, it is shown that if a language defining framework yields a uniformly decidable family of languages and has effective bounded finite thickness, then for each natural number m >0, the class of languages defined by formal systems of length <= m: • is identifiable in the limit from positive data with a mind change bound of Omega (power)m; • is identifiable in the limit from both positive and negative data with an ordinal mind change bound of Omega × m. The above sufficient conditions are employed to give an ordinal mind change bound for learnability of minimal models of various classes of length-bounded Prolog programs, including Shapiro’s linear programs, Arimura and Shinohara’s depth-bounded linearly covering programs, and Krishna Rao’s depth-bounded linearly moded programs. It is also noted that the bound for learning from positive data is tight for the example classes considered.
Resumo:
Within the current climate of unpredictability and constant change, young people at school are faced with a multitude of choices and contradictory influences. In this article, I argue that (re)presentations of young people in youth research need to reflect the complexity and multiplicity of their lives and changing priorities, and I attempt to (re)present a small group of young people in this particular milieu. I illustrate some of the competing influences in their lives, and I outline some specific strategies that are useful for (re)presenting these contextual worlds. The strategies I advocate disrupt the homogenous representations of ‘youth’ as a developmental phase and instead reflect the diverse spheres of influence which shape their subjectivities and practices.