447 resultados para autoregressive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiostim 2012, Nice, France

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental characterization and implementation of an integrated autoregressive model to predict the thermal performance of vegetal façades

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a new identification method based on the residual white noise autoregressive criterion (Pukkila et al. , 1990) to select the order of VARMA structures. Results from extensive simulation experiments based on different model structures with varying number of observations and number of component series are used to demonstrate the performance of this new procedure. We also use economic and business data to compare the model structures selected by this order selection method with those identified in other published studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80, 60K05.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62M20, 62M10, 62-07.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a new autoregressive conditional process to capture both the changes and the persistency of the intraday seasonal (U-shape) pattern of volatility in essay 1. Unlike other procedures, this approach allows for the intraday volatility pattern to change over time without the filtering process injecting a spurious pattern of noise into the filtered series. We show that prior deterministic filtering procedures are special cases of the autoregressive conditional filtering process presented here. Lagrange multiplier tests prove that the stochastic seasonal variance component is statistically significant. Specification tests using the correlogram and cross-spectral analyses prove the reliability of the autoregressive conditional filtering process. In essay 2 we develop a new methodology to decompose return variance in order to examine the informativeness embedded in the return series. The variance is decomposed into the information arrival component and the noise factor component. This decomposition methodology differs from previous studies in that both the informational variance and the noise variance are time-varying. Furthermore, the covariance of the informational component and the noisy component is no longer restricted to be zero. The resultant measure of price informativeness is defined as the informational variance divided by the total variance of the returns. The noisy rational expectations model predicts that uninformed traders react to price changes more than informed traders, since uninformed traders cannot distinguish between price changes caused by information arrivals and price changes caused by noise. This hypothesis is tested in essay 3 using intraday data with the intraday seasonal volatility component removed, as based on the procedure in the first essay. The resultant seasonally adjusted variance series is decomposed into components caused by unexpected information arrivals and by noise in order to examine informativeness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a new autoregressive conditional process to capture both the changes and the persistency of the intraday seasonal (U-shape) pattern of volatility in essay 1. Unlike other procedures, this approach allows for the intraday volatility pattern to change over time without the filtering process injecting a spurious pattern of noise into the filtered series. We show that prior deterministic filtering procedures are special cases of the autoregressive conditional filtering process presented here. Lagrange multiplier tests prove that the stochastic seasonal variance component is statistically significant. Specification tests using the correlogram and cross-spectral analyses prove the reliability of the autoregressive conditional filtering process. In essay 2 we develop a new methodology to decompose return variance in order to examine the informativeness embedded in the return series. The variance is decomposed into the information arrival component and the noise factor component. This decomposition methodology differs from previous studies in that both the informational variance and the noise variance are time-varying. Furthermore, the covariance of the informational component and the noisy component is no longer restricted to be zero. The resultant measure of price informativeness is defined as the informational variance divided by the total variance of the returns. The noisy rational expectations model predicts that uninformed traders react to price changes more than informed traders, since uninformed traders cannot distinguish between price changes caused by information arrivals and price changes caused by noise. This hypothesis is tested in essay 3 using intraday data with the intraday seasonal volatility component removed, as based on the procedure in the first essay. The resultant seasonally adjusted variance series is decomposed into components caused by unexpected information arrivals and by noise in order to examine informativeness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tesis doctoral nace con el propósito de entender, analizar y sobre todo modelizar el comportamiento estadístico de las series financieras. En este sentido, se puede afirmar que los modelos que mejor recogen las especiales características de estas series son los modelos de heterocedasticidad condicionada en tiempo discreto,si los intervalos de tiempo en los que se recogen los datos lo permiten, y en tiempo continuo si tenemos datos diarios o datos intradía. Con esta finalidad, en esta tesis se proponen distintos estimadores bayesianos para la estimación de los parámetros de los modelos GARCH en tiempo discreto (Bollerslev (1986)) y COGARCH en tiempo continuo (Kluppelberg et al. (2004)). En el capítulo 1 se introducen las características de las series financieras y se presentan los modelos ARCH, GARCH y COGARCH, así como sus principales propiedades. Mandelbrot (1963) destacó que las series financieras no presentan estacionariedad y que sus incrementos no presentan autocorrelación, aunque sus cuadrados sí están correlacionados. Señaló también que la volatilidad que presentan no es constante y que aparecen clusters de volatilidad. Observó la falta de normalidad de las series financieras, debida principalmente a su comportamiento leptocúrtico, y también destacó los efectos estacionales que presentan las series, analizando como se ven afectadas por la época del año o el día de la semana. Posteriormente Black (1976) completó la lista de características especiales incluyendo los denominados leverage effects relacionados con como las fluctuaciones positivas y negativas de los precios de los activos afectan a la volatilidad de las series de forma distinta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piotr Omenzetter and Simon Hoell's work within the Lloyd's Register Foundation Centre for Safety and Reliability Engineering at the University of Aberdeen is supported by Lloyd’s Register Foundation. The Foundation helps to protect life and property by supporting engineering-related education, public engagement and the application of research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piotr Omenzetter and Simon Hoell's work within the Lloyd's Register Foundation Centre for Safety and Reliability Engineering at the University of Aberdeen is supported by Lloyd’s Register Foundation. The Foundation helps to protect life and property by supporting engineering-related education, public engagement and the application of research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a new class of integer-valued self-exciting threshold models, which is based on the binomial autoregressive model of order one as introduced by McKenzie (Water Resour Bull 21:645–650, 1985. doi:10.1111/j.1752-1688.1985. tb05379.x). Basic probabilistic and statistical properties of this class of models are discussed. Moreover, parameter estimation and forecasting are addressed. Finally, the performance of these models is illustrated through a simulation study and an empirical application to a set of measle cases in Germany.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of screening techniques, such as an alternative light source (ALS), is important for finding biological evidence at a crime scene. The objective of this study was to evaluate whether biological fluid (blood, semen, saliva, and urine) deposited on different surfaces changes as a function of the age of the sample. Stains were illuminated with a Megamaxx™ ALS System and photographed with a Canon EOS Utility™ camera. Adobe Photoshop™ was utilized to prepare photographs for analysis, and then ImageJ™ was used to record the brightness values of pixels in the images. Data were submitted to analysis of variance using a generalized linear mixed model with two fixed effects (surface and fluid). Time was treated as a random effect (through repeated measures) with a first-order autoregressive covariance structure. Means of significant effects were compared by the Tukey test. The fluorescence of the analyzed biological material varied depending on the age of the sample. Fluorescence was lower when the samples were moist. Fluorescence remained constant when the sample was dry, up to the maximum period analyzed (60 days), independent of the substrate on which the fluid was deposited, showing the novelty of this study. Therefore, the forensic expert can detect biological fluids at the crime scene using an ALS even several days after a crime has occurred.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carrying out information about the microstructure and stress behaviour of ferromagnetic steels, magnetic Barkhausen noise (MBN) has been used as a basis for effective non-destructive testing methods, opening new areas in industrial applications. One of the factors that determines the quality and reliability of the MBN analysis is the way information is extracted from the signal. Commonly, simple scalar parameters are used to characterize the information content, such as amplitude maxima and signal root mean square. This paper presents a new approach based on the time-frequency analysis. The experimental test case relates the use of MBN signals to characterize hardness gradients in a AISI4140 steel. To that purpose different time-frequency (TFR) and time-scale (TSR) representations such as the spectrogram, the Wigner-Ville distribution, the Capongram, the ARgram obtained from an AutoRegressive model, the scalogram, and the Mellingram obtained from a Mellin transform are assessed. It is shown that, due to nonstationary characteristics of the MBN, TFRs can provide a rich and new panorama of these signals. Extraction techniques of some time-frequency parameters are used to allow a diagnostic process. Comparison with results obtained by the classical method highlights the improvement on the diagnosis provided by the method proposed.