588 resultados para attentional blink
Resumo:
The purpose of this study was to investigate the ontogeny of auditory learning via operant contingency in Northern bobwhite (Colinus virginianus ) hatchlings and possible interaction between attention, orienting and learning during early development. Chicks received individual 5 min training sessions in which they received a playback of a bobwhite maternal call at a single delay following each vocalization they emitted. Playback was either from a single randomly chosen speaker or switched back and forth semi-randomly between two speakers during training. Chicks were tested 24 hrs later in a simultaneous choice test between the familiar and an unfamiliar maternal call. It was found that day-old chicks showed a significant time-specific decrement in auditory learning when trained with delays in the range of 470–910 ms between their vocalizations and call playback only when training involved two speakers. Two-day-old birds showed an even more sustained disruption of learning than day-old chicks, whereas three-day-old chicks showed a pattern of intermittent interference with their learning when trained at such delays. A similar but less severe decrement in auditory learning was found when chicks were provided with motor training in which playback was contingent upon chicks entering and exiting one of two colored squares placed on the floor of the arena. Chicks provided with playback of the call at randomly chosen delays each time they vocalized exhibited large fluctuations in their responsivity to the auditory stimulus as a function of delay—fluctuations which were correlated significantly with measures of chick learning, particularly at two-days-of-age. When playback was limited to a single location chicks no longer showed a time-specific disruption of their learning of the auditory stimulus. Sequential analyses revealed several patterns suggesting that an attentional process similar or analogous to attentional blink may have contributed both to the observed fluctuations in chick responsivity to the auditory stimulus as a function of delay and to the time-specific learning deficit shown by chicks provided with two-speaker training. The study highlights that learning can be substantially modulated by processes of orienting and attention and has a number of important implications for research within cognitive neuroscience, animal behavior and learning.
Resumo:
For over 50 years, the Satisfaction of Search effect, and more recently known as the Subsequent Search Miss (SSM) effect, has plagued the field of radiology. Defined as a decrease in additional target accuracy after detecting a prior target in a visual search, SSM errors are known to underlie both real-world search errors (e.g., a radiologist is more likely to miss a tumor if a different tumor was previously detected) and more simplified, lab-based search errors (e.g., an observer is more likely to miss a target ‘T’ if a different target ‘T’ was previously detected). Unfortunately, little was known about this phenomenon’s cognitive underpinnings and SSM errors have proven difficult to eliminate. However, more recently, experimental research has provided evidence for three different theories of SSM errors: the Satisfaction account, the Perceptual Set account, and the Resource Depletion account. A series of studies examined performance in a multiple-target visual search and aimed to provide support for the Resource Depletion account—a first target consumes cognitive resources leaving less available to process additional targets.
To assess a potential mechanism underlying SSM errors, eye movements were recorded in a multiple-target visual search and were used to explore whether a first target may result in an immediate decrease in second-target accuracy, which is known as an attentional blink. To determine whether other known attentional distractions amplified the effects of finding a first target has on second-target detection, distractors within the immediate vicinity of the targets (i.e., clutter) were measured and compared to accuracy for a second target. To better understand which characteristics of attention were impacted by detecting a first target, individual differences within four characteristics of attention were compared to second-target misses in a multiple-target visual search.
The results demonstrated that an attentional blink underlies SSM errors with a decrease in second-target accuracy from 135ms-405ms after detection or re-fixating a first target. The effects of clutter were exacerbated after finding a first target causing a greater decrease in second-target accuracy as clutter increased around a second-target. The attentional characteristics of modulation and vigilance were correlated with second- target misses and suggest that worse attentional modulation and vigilance are predictive of more second-target misses. Taken together, these result are used as the foundation to support a new theory of SSM errors, the Flux Capacitor theory. The Flux Capacitor theory predicts that once a target is found, it is maintained as an attentional template in working memory, which consumes attentional resources that could otherwise be used to detect additional targets. This theory not only proposes why attentional resources are consumed by a first target, but encompasses the research in support of all three SSM theories in an effort to establish a grand, unified theory of SSM errors.
Resumo:
The effects of the sensory modality of the lead Stimulus and of task difficulty on attentional modulation of the electrical and acoustic blink reflex were examined. Participants performed a discrimination and counting task with either two acoustic, two visual, or two tactile lead stimuli. In Experiment 1, facilitation of the electrically elicited blink was greater during task-relevant than during task-irrelevant lead stimuli. Increasing task difficulty enhanced magnitude facilitation for acoustic lead stimuli. In Experiment 2, acoustic blink facilitation was greater during task-relevant lead stimuli, but was unaffected by task difficulty. Experiment 3 showed that a further increase in task difficulty did not affect acoustic blink facilitation during visual lead stimuli. The observation that blink reflexes are facilitated by attention in the present task domain is consistent across a range of stimulus modality and task difficulty conditions.
Resumo:
The interactive effects of emotion and attention on attentional startle modulation were investigated in two experiments. Participants performed a discrimination and counting task with two visual stimuli during which acoustic eyeblink startle-eliciting probes were presented at long lead intervals. In Experiment 1, this task was combined with aversive Pavlovian conditioning. In Group Attend CS+, the attended stimulus was followed by an aversive unconditional stimulus (US) and the ignored stimulus was presented alone whereas the ignored stimulus was paired with the US in Group Attend CS−. In Experiment 2, a non-aversive reaction time task US replaced the aversive US. Regardless of the conditioning manipulation and consistent with a modality non-specific account of attentional startle modulation, startle magnitude was larger during attended than ignored stimuli in both experiments. Blink latency shortening was differentially affected by the conditioning manipulations suggesting additive effects of conditioning and discrimination and counting task on blink startle.
Resumo:
The effects of attention to a lead stimulus and of its sensory properties on modulation of the acoustic blink reflex were investigated. Participants performed a reaction time task cued by an acoustic or a visual lead stimulus. In Experiment 1, half the participants were presented with sustained lead stimuli. For the remainder, the lead stimulus was discrete and consisted of two brief presentations that marked the onset and offset of a stimulus-free interval. In Experiment 2, sustained lead stimuli were presented at a low or high intensity. The attentional demands of the task enhanced blink latency and magnitude modulation during acoustic and visual lead stimuli, with blink modulation being largest at a late point during the lead stimulus. Independent of the attentional effects, blink latency and magnitude modulation were larger during sustained than during discrete acoustic lead stimuli, whereas there was no difference for visual lead stimuli. Increases in the intensity of the lead stimulus enhanced blink modulation regardless of lead stimulus modality. Attention to a lead stimulus and the properties of the lead stimulus appear to have independent effects on blink reflex modulation.
Resumo:
Two experiments examined blink modulation during viewing of pleasant, neutral and unpleasant picture stimuli in non-selected adults (N = 21) and children (N = 60) and children with anxiety disorders (N = 12). Blink reflexes were elicited by a white noise probe of 105 dB at lead stimulus intervals of 60, 240, 3500, and 5000 ms and during intertrial intervals. Blink modulation during unpleasant pictures was significantly different from blink modulation during neutral pictures at the 60 ms lead interval in children whereas adults showed no significant differences. Picture content had no differential effect on the extent of blink modulation for adults or children at the 240 ms lead interval. At the long lead intervals, blink modulation during unpleasant and pleasant pictures was significantly larger than during neutral pictures in adults. Picture valence did not differentially affect the extent of blink modulation at long lead intervals in children. Comparing the extent of blink modulation in anxious and non-selected children, blinks were significantly modulated during unpleasant pictures at the 60 ms lead interval for both groups. However, the extent of blink modulation was larger overall at this very short lead interval in anxious children. Children did not differ at other lead intervals. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Intrusive thoughts about food may play a role in unhealthy eating behaviours. Food-related thoughts that capture attention can lead to craving and further intrusive thoughts (Kavanagh, Andrade, & May, 2005). We tested whether diverting attention to mental images or bodily sensations would reduce the incidence of intrusive thoughts about snack foods. In two experiments, participants reported their thoughts in response to probes during three 10 min periods. In the Baseline and Post-task period, participants were asked to let their mind wander. In the middle, Experimental, period, participants followed mind wandering (Control), thought diversion, or Thought Suppression instructions. Self-directed or Guided Imagery, Mindfulness-based Body Scanning, and Thought Suppression all reduced the proportion of thoughts about food, compared to Baseline. Following Body Scanning and Thought Suppression, food thoughts returned to Baseline frequencies Post-task, rather than rebounding. There were no effects of the interventions upon craving, although overall, craving and thought frequency were correlated. Thought control tasks may help people to ignore thoughts about food and thereby reduce their temptation to snack.
Resumo:
A healthy human would be expected to show periodic blinks, making a brief closure of the eyelids. Most blinks are spontaneous, occurring regularly with no external stimulus. However a reflex blink can occur in response to external stimuli such as a bright light, a sudden loud noise, or an object approaching toward the eyes. A voluntary or forced blink is another type of blink in which the person deliberately closes the eyes and the lower eyelid raises to meet the upper eyelid. A complete blink, in which the upper eyelid touches the lower eyelid, contributes to the health of ocular surface by providing a fresh layer of tears as well as maintaining optical integrity by providing a smooth tear film over the cornea. The rate of blinking and its completeness vary depending on the task undertaken during blink assessment, the direction of gaze, the emotional state of the subjects and the method under which the blink was measured. It is also well known that wearing contact lenses (both rigid and soft lenses) can induce significant changes in blink rate and completeness. It is been established that efficient blinking plays an important role in ocular surface health during contact lens wear and for improving contact lens performance and comfort. Inefficient blinking during contact lens wear may be related to a low blink rate or incomplete blinking and can often be a reason for dry eye symptoms or ocular surface staining. It has previously been shown that upward gaze can affect blink rate, causing it to become faster. In the first experiment, it was decided to expand on previous studies in this area by examining the effect of various gaze directions (i.e. upward gaze, primary gaze, downward gaze and lateral gaze) as well as head angle (recumbent position) on normal subjects’ blink rate and completeness through the use of filming with a high-speed camera. The results of this experiment showed that as the open palpebral aperture (and exposed ocular surface area) increased from downward gaze to upward gaze, the number of blinks significantly increased (p<0.04). Also, the size of closed palpebral aperture significantly increased from downward gaze to upward gaze (p<0.005). A weak positive correlation (R² = 0.18) between the blink rate and ocular surface area was found in this study. Also, it was found that the subjects showed 81% complete blinks, 19% incomplete blinks and 2% of twitch blinks in primary gaze, consistent with previous studies. The difference in the percentage of incomplete blinks between upward gaze and downward gaze was significant (p<0.004), showing more incomplete blinks in upward gaze. The findings of this experiment suggest that while blink rate becomes slower in downward gaze, the completeness of blinking is typically better, thereby potentially reducing the risk of tear instability. On the other hand, in upward gaze while the completeness of blinking becomes worse, this is potentially offset by increased blink frequency. In addition, blink rate and completeness were not affected by lateral gaze or head angle, possibly because these conditions have similar size of the open palpebral aperture compared with primary gaze. In the second experiment, an investigation into the changes in blink rate and completeness was carried out in primary gaze and downward gaze with soft and rigid contact lenses in unadapted wearers. Not surprisingly, rigid lens wear caused a significant increase in the blink rate in both primary (p<0.001) and downward gaze (p<0.02). After fitting rigid contact lenses, the closed palpebral aperture (blink completeness) did not show any changes but the open palpebral aperture showed a significant narrowing (p<0.04). This might occur from the subjects’ attempt to avoid interaction between the upper eyelid and the edge of the lens to minimize discomfort. After applying topical anaesthetic eye drops in the eye fitted with rigid lenses, the increased blink rate dropped to values similar to that before lens insertion and the open palpebral aperture returned to baseline values, suggesting that corneal and/or lid margin sensitivity was mediating the increased blink rate and narrowed palpebral aperture. We also investigated the changes in the blink rate and completeness with soft contact lenses including a soft sphere, double slab-off toric design and periballast toric design. Soft contact lenses did not cause any significant changes in the blink rate, closed palpebral aperture, open palpebral aperture and the percentage of incomplete blinks in either primary gaze or downward gaze. After applying anaesthetic eye drops, the blink rate reduced in both primary gaze and downward gaze, however this difference was not statistically significant. The size of the closed palpebral aperture and open palpebral aperture did not show any significant changes after applying anaesthetic eye drops. However it should be noted that the effects of rigid and soft contact lenses that we observed in these studies were only the immediate reaction to contact lenses and in the longer term, it is likely that these responses will vary as the eye adapts to the presence of the lenses.
Resumo:
Emotional processes modulate the size of the eyeblink startle reflex in a picture-viewing paradigm, but it is unclear whether emotional processes are responsible for blink modulation in human conditioning. Experiment 1 involved an aversive differential conditioning phase followed by an extinction phase in which acoustic startle probes were presented during CS+, CS-, and intertrial intervals. Valence ratings and affective priming showed the CS+ was unpleasant postacquisition. Blink startle magnitude was larger during CS+ than during CS-. Experiment 2 used the same design in two groups trained with pleasant or unpleasant pictorial USs. Ratings and affective priming indicated that the CS+ had become pleasant or unpleasant in the respective group. Regardless of CS valence, blink startle was larger during CS+ than CS- in both groups. Thus, startle was not modulated by CS valence.
Resumo:
Affect modulates the blink startle reflex in the picture-viewing paradigm, however, the process responsible for reflex modulation during conditional stimuli (CSs) that have acquired valence through affective conditioning remains unclear. In Experiment 1, neutral shapes (CSs) and valenced or neutral pictures (USs) were paired in a forward (CS → US) manner. Pleasantness ratings supported affective learning of positive and negative valence. Post-acquisition, blink reflexes were larger during the pleasant and unpleasant CSs than during the neutral CS. Rather than affect, attention or anticipatory arousal were suggested as sources of startle modulation. Experiment 2 confirmed that affective learning in the picture–picture paradigm was not affected by whether the CS preceded the US. Pleasantness ratings and affective priming revealed similar extents of affective learning following forward, backward or simultaneous pairings of CSs and USs. Experiment 3 utilized a backward conditioning procedure (US → CS) to minimize effects of US anticipation. Again, blink reflexes were larger during CSs paired with valenced USs regardless of US valence implicating attention rather than anticipatory arousal or affect as the process modulating startle in this paradigm.
Resumo:
The Attentional Control Theory (ACT) proposes that high-anxious individuals maintain performance effectiveness (accuracy) at the expense of processing efficiency (response time), in particular, the two central executive functions of inhibition and shifting. In contrast, research has generally failed to consider the third executive function which relates to the function of updating. In the current study, seventy-five participants completed the Parametric Go/No-Go and n-back tasks, as well as the State-Trait Anxiety Inventory in order to explore the effects of anxiety on attention. Results indicated that anxiety lead to decay in processing efficiency, but not in performance effectiveness, across all three Central Executive functions (inhibition, set-shifting and updating). Interestingly, participants with high levels of trait anxiety also exhibited impaired performance effectiveness on the n-back task designed to measure the updating function. Findings are discussed in relation to developing a new model of ACT that also includes the role of preattentive processes and dual-task coordination when exploring the effects of anxiety on task performance.
In the blink of an eye : the circadian effects on ocular and subjective indices of driver sleepiness
Resumo:
Driver sleepiness contributes substantially to fatal and severe crashes and the contribution it makes to less serious crashes is likely to as great or greater. Currently, drivers’ awareness of sleepiness (subjective sleepiness) remains a critical component for the mitigation of sleep-related crashes. Nonetheless, numerous calls have been made for technological monitors of drivers’ physiological sleepiness levels so drivers can be ‘alerted’ when approaching high levels of sleepiness. Several physiological indices of sleepiness show potential as a reliable metric to monitor drivers’ sleepiness levels, with eye blink indices being a promising candidate. However, extensive evaluations of eye blink measures are lacking including the effects that the endogenous circadian rhythm can have on eye blinks. To examine the utility of ocular measures, 26 participants completed a simulated driving task while physiological measures of blink rate and duration were recorded after partial sleep restriction. To examine the circadian effects participants were randomly assigned to complete either a morning or an afternoon session of the driving task. The results show subjective sleepiness levels increased over the duration of the task. The blink duration index was sensitive to increases in sleepiness during morning testing, but was not sensitive during afternoon testing. This finding suggests that the utility of blink indices as a reliable metric for sleepiness are still far from specific. The subjective measures had the largest effect size when compared to the blink measures. Therefore, awareness of sleepiness still remains a critical factor for driver sleepiness and the mitigation of sleep-related crashes.
Resumo:
This study investigates the effects of trait anxiety on self-reported driving behaviours through its negative impacts on Central Executive functions. Following a self-report study that found trait anxiety to be significantly related to driving behaviours, the present study extended the predictions of Eysenck and Calvo’s Attentional Control Theory, proposing that anxiety affects driving behaviours, in particular driving lapses, through its impact across the Central Executive. Seventy-five Australian drivers participated in the study, completing the Parametric Go/No-Go and n-back tasks, as well as the State-Trait Anxiety Inventory and the Driving Behaviour Questionnaire. While both trait anxiety and processing efficiency of the Central Executive was found to significantly predict driving lapses, trait anxiety remained a strong predictor of driving lapses after processing efficiency was controlled for. It is concluded that while processing efficiency of the central Executive is a key determinant of driving lapses, another Central Executive function that is closer to the driving lapses in the trait anxiety – driving lapses relationship may be needed. Suggestions regarding how to improve future trait anxiety – driving behaviours research are discussed.
Resumo:
This paper documents the longitudinal and reciprocal relations among behavioral sleep problems, emotional and attentional self-regulation in a population sample of 4109 children participating in the Growing Up in Australia: The Longitudinal Study of Australian Children (LSAC) – Infant Cohort. Maternal reports of children’s sleep problems and self-regulation were collected at five time points from infancy to 8-9 years of age. Longitudinal structural equation modeling supported a developmental cascade model in which sleep problems have a persistent negative effect on emotional regulation, which in turn contributes to ongoing sleep problems and poorer attentional regulation in children over time. Findings suggest that sleep behaviors are a key target for interventions that aim to improve children’s self-regulatory capacities.