996 resultados para asymmetric synthesis


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is split into three sections based on three different areas of research. In the first section, investigations into the α-alkylation of ketones using a novel chiral auxiliary is reported. This chiral auxiliary was synthesised containing a pyrrolidine ring in the chiral arm and was applied in the preparation of α-alkylated ketones which were obtained in up to 92% ee and up to 63% yield over two steps. Both 3-pentanone and propiophenone based ketones were used in the investigation with a variety of both alkyl and benzyl based electrophiles. The novel chiral auxiliary was also successful when applied to Michael and aldol reactions. A diamine precursor en route to the chiral auxiliary was also applied as an organocatalyst in a Michael reaction, with the product obtained in excellent enantioselectivity. In the second section, investigations into potential anti-quorum sensing molecules are reported. The bacteria Pseudomonas aeruginosa is an antibiotic-resistant pathogen that demonstrates cooperative behaviours and communicates using small chemical molecules in a process termed quorum sensing. A variety of C-3 analogues of the quorum sensing molecules used by P. aeruginosa were synthesised. Expanding upon previous research within the group, investigations were carried out into alternative protecting group strategies of 2-heptyl-4-(1H)- quinolone with the aim of improving the yields of products of cross-coupling reactions. In the third section, investigations into fluorination and trifluoromethylation of 2-pyrones, pyridones and quinolones is reported. The incorporation of a fluorine atom or a trifluoromethyl group into a molecule is important in pharmaceutical drug discovery programmes as it can lead to increased lipophilicity and bioavailability, however late-stage incorporation is rarely reported. Both direct fluorination and trifluoromethylation were attempted. Eight trifluoromethylated 2-pyrones, five trifluoromethylated 2-pyridones and a trifluoromethylated 2-quinolone were obtained in a late-stage synthesis from their respective iodinated precursors using methyl fluorosulfonyldifluoroacetate as a trifluoromethylating reagent.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A general chemo-enzymatic process has been developed to prepare enantiomerically pure L- and D-amino acids in high yield by deracemisation of racemic starting materials. The method has been developed from initial academic studies to be a robust, scalable industrial process. Unnatural amino acids, in high optical purity, are a rapidly growing class of intermediates required for pharmaceuticals, agrochemicals and other fine chemical applications. However, no single method has proven sufficiently adaptable to prepare these compounds generally at large scale. Our approach uses an enantioselective oxidase biocatalyst and a non-selective chemical reducing agent to effect the stereoinversion of one enantiomer and can result in an enantiomeric excess of > 99 % from a starting racemate, and product yields over 90 %. The current approach compares very favourably to resolution methods which have a maximum single pass yield of 50 %. Efficient methods have been developed to adapt the biocatalyst used in this process towards new target compounds and to optimise key factors which improve the process efficiency and offer competitive economics at scale.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Maitra group has explored a variety of chemistry with bile acids during the past 15 years and these experiments have covered a wide variety of chemistry - asymmetric synthesis, molecular recognition, ion receptors/sensors, dendrimers, low molecular mass organo and hydrogelators, gel-nanoparticle composites, etc. Some of what excites us in this field is highlighted in this perspective article.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A broad perspective of various factors influencing alkene selenenylation has been developed by concurrent detailed analysis of key experimental and theoretical data, such as asymmetric induction, stereochemistry, relative reactivities, and comparison with that of alkene sulfenylation. Alkyl group branching a to the double bond was shown to have the greatest effect on alkene reactivity and the stereochemical outcome of corresponding addition reactions. This is in sharp contrast with other additions to alkenes, which depend more on the degree of substitution on C=C or upon substituent electronic effects. Electronic and steric effects influencing asymmetric induction, stereochemistry, regiochemistry, and relative reactivities in the addition of PhSeOTf to alkenes are compared and contrasted with those of PhSCl.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The asymmetric synthesis of quaternary stereocenters remains a challenging problem in organic synthesis. Past work from the Stoltz laboratory has resulted in methodology to install quaternary stereocenters α- or γ- to carbonyl compounds. Thus, the asymmetric synthesis of β-quaternary stereocenters was a desirable objective, and was accomplished by engineering the palladium-catalyzed addition of arylmetal organometallic reagents to α,β-unsaturated conjugate acceptors.

Herein, we described the rational design of a palladium-catalyzed conjugate addition reactions utilizing a catalyst derived from palladium(II) trifluoroacetate and pyridinooxazole ligands. This reaction is highly tolerant of protic solvents and oxygen atmosphere, making it a practical and operationally simple reaction. The mild conditions facilitate a remarkably high functional group tolerance, including carbonyls, halogens, and fluorinated functional groups. Furthermore, the reaction catalyzed conjugate additions with high enantioselectivity with conjugate acceptors of 5-, 6-, and 7-membered ring sizes. Extension of the methodology toward the asymmetric synthesis of flavanone products is presented, as well.

A computational and experimental investigation into the reaction mechanism provided a stereochemical model for enantioinduction, whereby the α-methylene protons adjacent the enone carbonyl clashes with the tert-butyl groups of the chiral ligand. Additionally, it was found that the addition of water and ammonium hexafluorophosphate significantly increases the reaction rate without sacrificing enantioselectivity. The synergistic effects of these additives allowed for the reaction to proceed at a lower temperature, and thus facilitated expansion of the substrate scope to sensitive functional groups such as protic amides and aryl bromides. Investigations into a scale-up synthesis of the chiral ligand (S)-tert-butylPyOx are also presented. This three-step synthetic route allowed for synthesis of the target compound of greater than 10 g scale.

Finally, the application of the newly developed conjugate addition reaction toward the synthesis of the taiwaniaquinoid class of terpenoid natural products is discussed. The conjugate addition reaction formed the key benzylic quaternary stereocenter in high enantioselectivity, joining together the majority of the carbons in the taiwaniaquinoid scaffold. Efforts toward the synthesis of the B-ring are presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Diketopiperazine (DKP) motif is found in a wide range of biologically active natural products. This work details our efforts toward two classes of DKP-containing natural products.

Class one features the pyrroloindoline structure, derived from tryptophans. Our group developed a highly enantioselective (3 + 2) formal cycloaddition between indoles and acrylates to provide pyrroloindoline products possessing three stereocenters. Utilizing this methodology, we accomplished asymmetric total synthesis of three natural products: (–)-lansai B, (+)-nocardioazines A and B. Total synthesis of (–)-lansai B was realized in six steps, and featured an amino acid dimerization strategy. The total synthesis of (+)-nocardioazine B was also successfully completed in ten steps. Challenges were met in approaching (+)-nocardioazine A, where a seemingly easy last-step epoxidization did not prove successful. After re-examining our synthetic strategy, an early-stage epoxidation strategy was pursued, which eventually yielded a nine-step total synthesis of (+)-nocardioazine A.

Class two is the epidithiodiketopiperazine (ETP) natural products, which possesses an additional episulfide bridge in the DKP core. With the goal of accessing ETPs with different peripheral structures for structure-activity relationship studies, a highly divergent route was successfully developed, which was showcased in the formal synthesis of (–)-emethallicin E and (–)-haematocin, and the first asymmetric synthesis of (–)-acetylapoaranotin.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A family of chiral ligands derived from alpha-phenylethylamine and 2-aminobenzophenone were prepared by alkylation of the nitrogen atom. Upon reaction with glycine and a Ni(II) salt, these ligands were transformed into diastereomeric complexes, as a result of the configurational stability of the stereogenic nitrogen atom. Different diastereomeric ratios were observed depending on the substituent R introduced in the starting ligand, and stereochemical assignments were based on X-ray analysis, along with NMR studies and optical rotation measurements.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper reviews the recent progress made in the asymmetric synthesis on chiral catalysts in porous materials and discusses the effects of surface and pores on enantio-selectivity (confinement effect). This paper also summarizes various approaches of immobilization of the chiral catalysts onto surfaces and into pores of solid inorganic supports such as microporous and mesoporous materials. The most important reactions surveyed for the chiral synthesis in porous materials include epoxidation. hydrogenation, hydroformylation, Aldol and Diels-Alder reactions, etc. The confinement effect originated from the surfaces and the pores turns out to be a general phenomenon. which may make the enantioselectivity increase (positive effect) or decrease (negative effect). The confinement effect becomes more pronounced particularly when the bonding between the catalyst and the surface is more rigid and the pore size is tuned to a suitable range. It is proposed that the confinement in chiral synthesis is essentially a consequence of subtle change in transition states induced by weak-interaction in pores or on surfaces. It is also anticipated that the enantioselectivity could be improved by tuning the confinement effect based on the molecular designing of the pore/surface and the immobilized catalysts according to the requirements of chiral reactions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Efficient synthetic procedures for the preparation of beta-trithiophenes (dithieno[2,3-b:3',2'-d]thiophene) and two macrocyclic compounds, tetra[2,3-thienylene] and hexa[2,3-thienylene] bearing trimethylsilyl (TMS) groups from 2,2'-dibromo-5,5'-bistrimethylsilanyl[3,3']bithiophenyl are reported. The UV-Vis spectra property and crystal structures of these macrocyclic oligothiophenes are described.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The focus of this thesis is the preparation of enantiopure sulfoxides by means of copper-catalysed asymmetric sulfoxidation, with particular emphasis on the synthesis of aryl benzyl and aryl alkyl sulfoxides. Chapter 1 contains a review of the methods employed for the asymmetric synthesis of sulfoxides, compounds with many applications in stereoselective synthesis and in some cases with pharmaceutical application. Chapter 1 describes asymmetric oxidation, including metal-catalysed, non metal-catalysed and enzyme-catalysed, in addition to synthetic approaches via nucleophilic substitution of appropriately substituted precursors. Kinetic resolution in oxidation of sulfoxides to the analogous sulfones is also discussed; in certain cases, access to enantioenriched sulfoxides can be achieved via a combination of asymmetric sulfoxidation and complementary kinetic resolution. The design and synthesis of a series of sulfides to enable exploration of the substituent effects of the copper-mediated oxidation was undertaken, and oxidation to the racemic sulfoxides and sulfones to provide reference samples was conducted. Oxidation of the sulfides using copper-Schiff base catalysis was undertaken leading to enantioenriched sulfoxides. The procedure employed is clean, inexpensive, not air-sensitive and utilises aqueous hydrogen peroxide as oxidant. Extensive investigation of the influence of the reaction conditions such as solvent, temperature, copper salt and ligand was undertaken to lead to the optimised conditions. While the direct attachment of one aryl substituent to the sulfide is essential for efficient enantiocontrol, in the case of the second substituent the enantiocontol is dependent on the steric rather than electronic features of the substituent. Significantly, use of naphthyl-substituted sulfides results in excellent enantiocontrol; notably 97% ee, obtained in the oxidation of 2-naphthyl benzyl sulfide, represents the highest enantioselectivity reported to date for a copper-mediated sulfur oxidation. Some insight into the mechanistic features of the copper-mediated sulfur oxidation has been developed based on this work, although further investigation is required to establish the precise nature of the catalytic species responsible for asymmetric sulfur oxidation. Full experimental details, describing the synthesis and structural characterisation, and determination of enantiopurity are included in chapter 3.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The primary focus of this thesis was the asymmetric peroxidation of α,β-unsaturated aldehydes and the development of this methodology to include the synthesis of bioactive chiral 1,2-dioxane and 1,2-dioxalane rings. In Chapter 1 a review detailing the new and improved methods for the acyclic introduction of peroxide functionality to substrates over the last decade was discussed. These include a detailed examination of metal-mediated transformations, chiral peroxidation using organocatalytic means and the improvements in methodology of well-established peroxidation pathways. The second chapter discusses the method by which peroxidation of our various substrates was attempted and the optimisation studies associated with these reactions. The method by which the enantioselectivity of our β-peroxyaldehydes was determined is also reviewed. Chapters 3 and 4 focus on improving the enantioselectivity associated with our asymmetric peroxidation reaction. A comprehensive analysis exploring the effect of solvent, concentration and temperature on enantioselectivity was examined. The effect that different catalytic systems have on enantioselectivity and reactivity was also investigated in depth. Chapter 5 details the various transformations that β-peroxyaldehydes can undergo and the manipulation of these transformations towards the establishment of several routes for the formation of chiral 1,2-dioxane and 1,2-dioxalane rings. Chapter 6 details the full experimental procedures, including spectroscopic and analytical data for the compounds prepared during this research.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

(S)-4-Hydroxy-a-lapachone has been prepared for the first time. The commercially available compound 2-acetyl-1-naphthol was used as the starting material. The synthesis involved methylation, followed by Baeyer-Villiger oxidation, and hydrolysis of the acetate to give 1-methoxy-2-naphthol. After protecting of the hydroxyl group, t-BuLi was used to form 3-(3',3'-dimethyl-acryloyl)-1- meth oxy-2- (meth oxymethoxy)-naphthalen e. eycl izationand oxidation then gave 4-keto-a-lapachone. Finally enzymic biotransformation by Mortierella isabellina ATCC 42613 was used to yield the target compound. The enantiomeric excess of the product was determined to be ~98% by using 1H NMR chiral shift analysis. The overall yield is 80/0. The biological activity of (S)-4-hydroxy-alapachone and its acetate are under investigation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The development of new methodology for the asymmetric synthesis of chiral organic compounds is a major focus in modem organic chemistry. The use of chiral catalysts is replacing chiral auxiliaries as a new tool for synthetic chemists. An efficient chiral catalyst allows for large quantities of optically active product to be obtained on use of relatively small amount of enantiopure material, without the need for the removal and recovery of a chiral auxiliary. Furthermore, the most practical catalytic methods utilize an inexpensive and readily available chiral ligand that can provide high and predictable enantioselectivity across a wide range of substrates. In our project, two type of versatile, upgraded chiral ligands have been designed and synthesized. Their application in Simmons-Smith type cyclopropanation is investigated, and the pleasing results suggest that they are the potential catalytic enantioselective candidates to build C-C bonds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis explored the development of several methodologies for the stereoselective construction of ligand frameworks and some of their applications. The first segment concerns the application of an enantioselective lithiation at an Sp3_ hybridized position adjacent to nitrogen by means of the widely used and typically highly effective enantioselective lithiation with ( -)-sparteine. This investigation was intended to develop a method to install chirality into a system that would be converted into a family of diaminoylidenes for use as phosphine mimics in transition metal catalysis or as nucleophilic reagents. Molecular modeling of the system revealed some key interactions between the substrate and (-)-sparteine that provided general insight into the diamine's mode of action and should lend some predictive value to its future applications. The second portion focuses on the development of methods to access 1,2- disubstituted aminoferrocenes, an underexplored class of metallocenes possessing planar chirality. Two routes were examined involving a diastereoselective and an enantioselective pathway, where the latter method made use of the first BF3-mediated lithiation-substitution to install planar chirality. Key derivatives such as 1,2- aminophosphines, made readily accessible by the new route, were evaluated as ligands for Pd(II), Pt(II) and Ir(I). These complexes show activity in a number of transformations with both achiral and prochiral substrates. Optimization experiments were conducted to prepare enantiomerically enriched 2-substituted-I-aminoferrocenes by direct asymmetric lithiation of BF3-coordinated tertiary aminoferrocenes. A predictive computational model describing the transition state of this reaction was developed in collaboration with Professor Travis Dudding's group (Department of Chemistry, Brock University). The predicted stereochemistry of the process was confirmed by single-crystal X-ray analysis of a 2-phosphino-l-dimethylaminoferrocene derivative. Enantiomerically pure samples of the aminophosphine ligands derived from this new process have given promising preliminary results in the enantioselective hydrogenation of prochiral alkenes and warrant further stUdy in metal-mediated catalysis.