819 resultados para arm movement


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous work has shown that amplitude and direction are two independently controlled parameters of aimed arm movements, and performance, therefore, suffers when they must be decomposed into Cartesian coordinates. We now compare decomposition into different coordinate systems. Subjects pointed at visual targets in 2-D with a cursor, using a two-axis joystick or two single-axis joysticks. In the latter case, joystick axes were aligned with the subjects’ body axes, were rotated by –45°, or were oblique (i.e., one axis was in an egocentric frame and the other was rotated by –45°). Cursor direction always corresponded to joystick direction. We found that compared with the two-axis joystick, responses with single-axis joysticks were slower and less accurate when the axes were oriented egocentrically; the deficit was even more pronounced when the axes were rotated and was most pronounced when they were oblique. This confirms that decomposition of motor commands is computationally demanding and documents that this demand is lowest for egocentric, higher for rotated, and highest for oblique coordinates. We conclude that most current vehicles use computationally demanding man–machine interfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To evaluate the feasibility and effect of a water-based exercise (WBE) program on lymphedema status and shoulder range of motion (ROM) among women with breast cancer related lymphedema. Design: Single-blinded, randomized controlled pilot trial. Twenty-nine eligible breast cancer survivors (median 10 years after surgery) with arm lymphedema (median 21% inter limb difference) were included and randomized into intervention (n= 15) or control (n=14). Twenty-five participants completed the study. The intervention was at least twice weekly WBE for 8 weeks; supervised initially but performed independently during the study period. Outcomes of interest were feasibility as measured by retention and adherence, lymphedema status as measured by optoelectronic perometry, bioimpedance spectroscopy and tissue dielectric constant, and shoulder range of motion (ROM) as measured by goniometer. Results: Four participants were not measured at post-intervention and were not included in the analysis (retention). Four participants in the intervention group did not perform the minimum WBE criteria set (adherence). No effect was found on lymphedema status. Compared to the control group, median ROM change for flexion was 6 (1-10) degrees (p<0.001) and 6 (0-15.5) degrees (p=0,07) for external rotation. Clinically relevant increase in the intervention group was found for 36% in flexion (p≤0.05) and (57%) in external rotation (p≤0.05) compared to controls. Conclusions: This study shows WBE is feasible for breast cancer survivors with arm lymphedema and that shoulder ROM can be improved years after cancer treatment has been completed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The improved treatment protocols and subsequent improved survival rates amongst childhood cancer patients has shifted the focus towards the long-term consequences arising from cancer treatment. Children who have completed cancer treatment are at a greater risk of delayed development, diminished functioning, disability, compromised fundamental movement skill (FMS) attainment and long term chronic health conditions. The aim of the study was to compare FMS of childhood cancer patients with an aged matched healthy reference group. Methods Pediatric cancer patients aged 5-8 years of age (n=26; median age 6.91 years), who completed cancer treatment (<5 years) at the Sydney Children’s Hospital were assessed performing 7 key FMS; sprint, side-gallop, vertical-jump, catch, over-arm throw, kick and leap. Results were compared to the reference group (n=430; 6.56 years). Results Childhood cancer patients scored significantly lower on 3 out of 7 FMS tests when compared to the reference group. These results equated to a significantly lower overall score for FMS. Conclusion This study highlighted the significant deficits in FMS within pediatric patients having completed cancer treatment. In order to reduce the occurrence of significant FMS deficits in this population, FMS interventions maybe warranted to assist in recovery from childhood cancer, prevent late effects and improve the quality of life in survivors of childhood cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Humans are able to learn tool-handling tasks, such as carving, demonstrating their competency to make movements in unstable environments with varied directions. When faced with a single direction of instability, humans learn to selectively co-contract their arm muscles tuning the mechanical stiffness of the limb end point to stabilize movements. This study examines, for the first time, subjects simultaneously adapting to two distinct directions of instability, a situation that may typically occur when using tools. Subjects learned to perform reaching movements in two directions, each of which had lateral instability requiring control of impedance. The subjects were able to adapt to these unstable interactions and switch between movements in the two directions; they did so by learning to selectively control the end-point stiffness counteracting the environmental instability without superfluous stiffness in other directions. This finding demonstrates that the central nervous system can simultaneously tune the mechanical impedance of the limbs to multiple movements by learning movement-specific solutions. Furthermore, it suggests that the impedance controller learns as a function of the state of the arm rather than a general strategy. © 2011 the American Physiological Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to examine the effects of cadence and power output on physiological and biomechanical responses to incremental arm-crank ergometry (ACE). Ten male subjects (mean +/- SD age, 30.4 +/-5.4 y; height, 1.78 +/-0.07 m; mass, 86.1 +/-14.2 kg) undertook 3 incremental ACE protocols to determine peak oxygen uptake (VO2 peak; mean of 3 tests: 3.07 +/- 0.17 L.min-1) at randomly assigned cadences of 50, 70, or 90 r.min-1. Heart rate and expired air were continually monitored. Central (RPE-C) and local (RPE-L) ratings of perceived exertion were recorded at volitional exhaustion. Joint angles and trunk rotation were analysed during each exercise stage. During submaximal power outputs of 50, 70, and 90 W, oxygen consumption (VO2) was lowest for 50 r.min-1 and highest for 90 r.min-1 (p < 0.01). VO2 peak was lowest during 50 r.min-1 (2.79 +/-0.45 L.min-1; p < 0.05) when compared with both 70 r.min-1 and 90 r.min-1 (3.16 +/-0.58, 3.24 +/-0.49 L.min-1, respectively; p > 0.05). The difference between RPE-L and RPE-C at volitional exhaustion was greatest during 50 r.min-1 (2.9 +/- 1.6) when compared with 90 r.min-1 (0.9 +/- 1.9, p < 0.05). At VO2 peak, shoulder range of motion (ROM) and trunk rotation were greater for 50 and 70 r.min-1 when compared with 90 r.min-1 (p < 0.05). During submaximal power outputs, shoulder angle and trunk rotation were greatest at 50 r.min-1 when compared with 90 r.min-1 (p < 0.05). VO2 was inversely related to both trunk rotation and shoulder ROM during submaximal power outputs. The results of this study suggest that the greater forces required at lower cadences to produce a given power output resulted in greater joint angles and range of shoulder and trunk movement. Greater isometric contractions for torso stabilization and increased cost of breathing possibly from respiratory-locomotor coupling may have contributed increased oxygen consumption at higher cadences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The SMART (SensoriMotor Active Rehabilitation Training) Arm is a nonrobotic device designed to allow stroke survivors with severe paresis to practice reaching. It can be used with or without outcome-triggered electrical stimulation (OT-stim) to augment movement. The aim of this study was to evaluate the efficacy of SMART Arm training when used with or without OT-stim, in addition to usual care, as compared with usual care alone during inpatient rehabilitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recovery of upper limb function after stroke is poor. The acute to subacute phase after stroke is the optimal time window to promote the recovery of upper limb function. The dose and content of training provided conventionally during this phase is however, unlikely to be adequate to drive functional recovery, especially in the presence of severe motor disability. The current study concerns an approach to address this shortcoming, through evaluation of the SMART Arm, a non-robotic device that enables intensive and repetitive practice of reaching by stroke survivors with severe upper limb disability, with the aim of improving upper limb function. The outcomes of SMART Arm training with or without outcome-triggered electrical stimulation (OT-stim) to augment movement and usual therapy will be compared to usual therapy alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous research has shown that Parkinson's disease (PD) patients can increase the speed of their movement when catching a moving ball compared to when reaching for a static ball (Majsak et al., 1998). A recent model proposed by Redgrave et al. (2010) explains this phenomenon with regard to the dichotomic organization of motor loops in the basal ganglia circuitry and the role of sensory micro-circuitries in the control of goal-directed actions. According to this model, external visual information that is relevant to the required movement can induce a switch from a habitual control of movement toward an externally-paced, goal-directed form of guidance, resulting in augmented motor performance (Bienkiewicz et al., 2013). In the current study, we investigated whether continuous acoustic information generated by an object in motion can enhance motor performance in an arm reaching task in a similar way to that observed in the studies of Majsak et al. (1998, 2008). In addition, we explored whether the kinematic aspects of the movement are regulated in accordance with time to arrival information generated by the ball's motion as it reaches the catching zone. A group of 7 idiopathic PD (6 male, 1 female) patients performed a ball-catching task where the acceleration (and hence ball velocity) was manipulated by adjusting the angle of the ramp. The type of sensory information (visual and/or auditory) specifying the ball's arrival at the catching zone was also manipulated. Our results showed that patients with PD demonstrate improved motor performance when reaching for a ball in motion, compared to when stationary. We observed how PD patients can adjust their movement kinematics in accordance with the speed of a moving target, even if vision of the target is occluded and patients have to rely solely on auditory information. We demonstrate that the availability of dynamic temporal information is crucial for eliciting motor improvements in PD. Furthermore, these effects appear independent from the sensory modality through-which the information is conveyed. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Overuse injuries in violinists are a problem that has been primarily analyzed through the use of questionnaires. Simultaneous 3D motion analysis and EMG to measure muscle activity has been suggested as a quantitative technique to explore this problem by identifying movement patterns and muscular demands which may predispose violinists to overuse injuries. This multi-disciplinary analysis technique has, so far, had limited use in the music world. The purpose of this study was to use it to characterize the demands of a violin bowing task. Subjects: Twelve injury-free violinists volunteered for the study. The subjects were assigned to a novice or expert group based on playing experience, as determined by questionnaire. Design and Settings: Muscle activity and movement patterns were assessed while violinists played five bowing cycles (one bowing cycle = one down-bow + one up-bow) on each string (G, D, A, E), at a pulse of 4 beats per bow and 100 beats per minute. Measurements: An upper extremity model created using coordinate data from markers placed on the right acromion process, lateral epicondyle of the humerus and ulnar styloid was used to determine minimum and maximum joint angles, ranges of motion (ROM) and angular velocities at the shoulder and elbow of the bowing arm. Muscle activity in right anterior deltoid, biceps brachii and triceps brachii was assessed during maximal voluntary contractions (MVC) and during the playing task. Data were analysed for significant differences across the strings and between experience groups. Results: Elbow flexion/extension ROM was similar across strings for both groups. Shoulder flexion/extension ROM increaslarger for the experts. Angular velocity changes mirrored changes in ROM. Deltoid was the most active of the muscles assessed (20% MVC) and displayed a pattern of constant activation to maintain shoulder abduction. Biceps and triceps were less active (4 - 12% MVC) and showed a more periodic 'on and off pattern. Novices' muscle activity was higher in all cases. Experts' muscle activity showed a consistent pattern across strings, whereas the novices were more irregular. The agonist-antagonist roles of biceps and triceps during the bowing motion were clearly defined in the expert group, but not as apparent in the novice group. Conclusions: Bowing movement appears to be controlled by the shoulder rather than the elbow as shoulder ROM changed across strings while elbow ROM remained the same. Shoulder injuries are probably due to repetition as the muscle activity required for the movement is small. Experts require a smaller amount of muscle activity to perform the movement, possibly due to more efficient muscle activation patterns as a result of practice. This quantitative multidisciplinary approach to analysing violinists' movements can contribute to fuller understanding of both playing demands and injury mechanisms .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objects with which the hand interacts with may significantly change the dynamics of the arm. How does the brain adapt control of arm movements to this new dynamic? We show that adaptation is via composition of a model of the task's dynamics. By exploring generalization capabilities of this adaptation we infer some of the properties of the computational elements with which the brain formed this model: the elements have broad receptive fields and encode the learned dynamics as a map structured in an intrinsic coordinate system closely related to the geometry of the skeletomusculature. The low--level nature of these elements suggests that they may represent asset of primitives with which a movement is represented in the CNS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we investigated the hypothesis that the simple set of rules used to explain the modulation of muscle activities during single-joint movements could also be applied for reversal movements of the shoulder and elbow joints. The muscle torques of both joints were characterized by a triphasic impulse. The first impulse of each joint accelerated the limb to the target and was generated by an initial burst of the muscles activated first (primary mover). The second impulse decelerated the limb to the target, reversed movement direction and accelerated the limb back to the initial position, and was generated by an initial burst of the muscles activated second (secondary movers). A third impulse, in each joint, decelerated the limb to the initial position due to the generation of a second burst of the primary movers. The first burst of the primary mover decreased abruptly, and the latency between the activation of the primary and secondary movers varied in proportion with target distances for the elbow, but not for the shoulder muscles. All impulses and bursts increased with target distances and were well coupled. Therefore, as predicted, the bursts of muscle activities were modulated to generate the appropriate level of muscle torque. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Processing efficiency theory predicts that anxiety reduces the processing capacity of working memory and has detrimental effects on performance. When tasks place little demand on working memory, the negative effects of anxiety can be avoided by increasing effort. Although performance efficiency decreases, there is no change in performance effectiveness. When tasks impose a heavy demand on working memory, however, anxiety leads to decrements in efficiency and effectiveness. These presumptions were tested using a modified table tennis task that placed low (LWM) and high (HWM) demands on working memory. Cognitive anxiety was manipulated through a competitive ranking structure and prize money. Participants' accuracy in hitting concentric circle targets in predetermined sequences was taken as a measure of performance effectiveness, while probe reaction time (PRT), perceived mental effort (RSME), visual search data, and arm kinematics were recorded as measures of efficiency. Anxiety had a negative effect on performance effectiveness in both LWM and HWM tasks. There was an increase in frequency of gaze and in PRT and RSME values in both tasks under high vs. low anxiety conditions, implying decrements in performance efficiency. However, participants spent more time tracking the ball in the HWM task and employed a shorter tau margin when anxious. Although anxiety impaired performance effectiveness and efficiency, decrements in efficiency were more pronounced in the HWM task than in the LWM task, providing support for processing efficiency theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 21 normal adult male subjects, the muscular activity of the levator scapulae and rhomboideus major muscles was studied electromyographically during the movements of the shoulder and arm. Two single coaxial needle electrodes were used for registering the action potentials. Concerning shoulder movement, it was shown that the levator scapulae was active in elevation and rhomboideus major was active in retraction. Both muscles were inactive during protrusion, in most events. Concerning free movements of the arm, both muscles were active in abduction, elevation, adduction, flexion and circumduction, but inactive in extension. During the same movements, performed with a load, we observed greater intensity in the activity of these muscles in comparison to their activity during free movements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electromyographic activity of the biceps brachii - BB (long head), triceps brachii - TB (long head) and deltoideus - DA (clavicular portion) muscles, during the going (G) and return (R) phases in front support exercise, as well the efficacy of this exercise for the development of these muscles strength were studied in 10 male volunteers. The values were normalized through maximum voluntary isometric contraction (MVIC = 100%) and statistically analyzed using the Friedman, DMS and Wilcoxon non-parametric test. A value of p≤0.05 indicated significance (Campos, 1983). All the muscles presented higher electromyographic activity in the return phase of the movement. The triceps brachii was the muscle which had higher activity in both phases of the movement. It was concluded that the front support exercise is efficient for strength development mainly in the triceps brachii muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aims at quantifying through electromyography the actions of the biceps brachii-BB (long head), tríceps brachii- TB (long head) and deltoideus-DA (clavicular portion) muscles, during the going (G) and return (R) phases in back support exercises. Surface electrodes were placed at the muscles, according to DELAGI (1981). It was used a specific software and a AID plate to take the signals. After being collected, the records were processed resulting in efficient values (RMS), were normalized by maximum isometric contraction (MVIC=100%) and statistically analysed using the Friedman, DSM and Wilcox non-parametric tests. All the muscles presented electromyographic activity of the movements. The triceps brachii was the muscle with higher activity in both phases of the movement. It was concluded that the exercise is indicated for the arm muscle strength development.