797 resultados para applied learning educators


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two experiments tested predictions from a theory in which processing load depends on relational complexity (RC), the number of variables related in a single decision. Tasks from six domains (transitivity, hierarchical classification, class inclusion, cardinality, relative-clause sentence comprehension, and hypothesis testing) were administered to children aged 3-8 years. Complexity analyses indicated that the domains entailed ternary relations (three variables). Simpler binary-relation (two variables) items were included for each domain. Thus RC was manipulated with other factors tightly controlled. Results indicated that (i) ternary-relation items were more difficult than comparable binary-relation items, (ii) the RC manipulation was sensitive to age-related changes, (iii) ternary relations were processed at a median age of 5 years, (iv) cross-task correlations were positive, with all tasks loading on a single factor (RC), (v) RC factor scores accounted for 80% (88%) of age-related variance in fluid intelligence (compositionality of sets), (vi) binary- and ternary-relation items formed separate complexity classes, and (vii) the RC approach to defining cognitive complexity is applicable to different content domains. (C) 2002 Elsevier Science (USA). All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates three important issues in kanji learning strategies; namely, strategy use, effectiveness of strategy and orthographic background. A questionnaire on kanji learning strategy use and perceived effectiveness was administered to 116 beginner level, undergraduate students of Japanese from alphabetic and character backgrounds in Australia. Both descriptive and statistical analyses of the questionnaire responses revealed that the strategies used most often are the most helpful. Repeated writing was reported as the most used strategy type although alphabetic background learners reported using repeated writing strategies significantly more often than character background learners. The importance of strategy training and explicit instruction of fundamental differences between character and alphabetic background learners of Japanese is discussed in relation to teaching strategies. [Author abstract]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reinforcement Learning is an area of Machine Learning that deals with how an agent should take actions in an environment such as to maximize the notion of accumulated reward. This type of learning is inspired by the way humans learn and has led to the creation of various algorithms for reinforcement learning. These algorithms focus on the way in which an agent’s behaviour can be improved, assuming independence as to their surroundings. The current work studies the application of reinforcement learning methods to solve the inverted pendulum problem. The importance of the variability of the environment (factors that are external to the agent) on the execution of reinforcement learning agents is studied by using a model that seeks to obtain equilibrium (stability) through dynamism – a Cart-Pole system or inverted pendulum. We sought to improve the behaviour of the autonomous agents by changing the information passed to them, while maintaining the agent’s internal parameters constant (learning rate, discount factors, decay rate, etc.), instead of the classical approach of tuning the agent’s internal parameters. The influence of changes on the state set and the action set on an agent’s capability to solve the Cart-pole problem was studied. We have studied typical behaviour of reinforcement learning agents applied to the classic BOXES model and a new form of characterizing the environment was proposed using the notion of convergence towards a reference value. We demonstrate the gain in performance of this new method applied to a Q-Learning agent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The way humans interact with technology is undergoing a tremendous change. It is hard to imagine the lives we live today without the benefits of technology that we take for granted. Applying research in computer science, engineering, and information systems to non-technical descriptions of technology, such as human interaction, has shaped and continues to shape our lives. Human Interaction with Technology for Working, Communicating, and Learning: Advancements provides a framework for conceptual, theoretical, and applied research in regards to the relationship between technology and humans. This book is unique in the sense that it does not only cover technology, but also science, research, and the relationship between these fields and individuals' experience. This book is a must have for anyone interested in this research area, as it provides a voice for all users and a look into our future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mestrado (PES II), Educação Pré-Escolar e Ensino do 1º Ciclo do Ensino Básico, 26 de Junho de 2014, Universidade dos Açores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mestrado (PES II), Educação Pré-Escolar e Ensino do 1º Ciclo do Ensino Básico, 26 de Junho de 2014, Universidade dos Açores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

23rd SPACE AGM and Conference from 9 to 12 May 2012 Conference theme: The Role of Professional Higher Education: Responsibility and Reflection Venue: Mikkeli University of Applied Sciences, Mikkeli, Finland

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A repository of learning objects is a system that stores electronic resources in a technology-mediated learning process. The need for this kind of repository is growing as more educators become eager to use digital educa- tional contents and more of it becomes available. The sharing and use of these resources relies on the use of content and communication standards as a means to describe and exchange educational resources, commonly known as learning objects. This paper presents the design and implementation of a service-oriented reposi- tory of learning objects called crimsonHex. This repository supports new definitions of learning objects for specialized domains and we illustrate this feature with the definition of programming exercises as learning objects and its validation by the repository. The repository is also fully compliant with existing commu- nication standards and we propose extensions by adding new functions, formalizing message interchange and providing a REST interface. To validate the interoperability features of the repository, we developed a repository plug-in for Moodle that is expected to be included in the next release of this popular learning management system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Thesis describes the application of automatic learning methods for a) the classification of organic and metabolic reactions, and b) the mapping of Potential Energy Surfaces(PES). The classification of reactions was approached with two distinct methodologies: a representation of chemical reactions based on NMR data, and a representation of chemical reactions from the reaction equation based on the physico-chemical and topological features of chemical bonds. NMR-based classification of photochemical and enzymatic reactions. Photochemical and metabolic reactions were classified by Kohonen Self-Organizing Maps (Kohonen SOMs) and Random Forests (RFs) taking as input the difference between the 1H NMR spectra of the products and the reactants. The development of such a representation can be applied in automatic analysis of changes in the 1H NMR spectrum of a mixture and their interpretation in terms of the chemical reactions taking place. Examples of possible applications are the monitoring of reaction processes, evaluation of the stability of chemicals, or even the interpretation of metabonomic data. A Kohonen SOM trained with a data set of metabolic reactions catalysed by transferases was able to correctly classify 75% of an independent test set in terms of the EC number subclass. Random Forests improved the correct predictions to 79%. With photochemical reactions classified into 7 groups, an independent test set was classified with 86-93% accuracy. The data set of photochemical reactions was also used to simulate mixtures with two reactions occurring simultaneously. Kohonen SOMs and Feed-Forward Neural Networks (FFNNs) were trained to classify the reactions occurring in a mixture based on the 1H NMR spectra of the products and reactants. Kohonen SOMs allowed the correct assignment of 53-63% of the mixtures (in a test set). Counter-Propagation Neural Networks (CPNNs) gave origin to similar results. The use of supervised learning techniques allowed an improvement in the results. They were improved to 77% of correct assignments when an ensemble of ten FFNNs were used and to 80% when Random Forests were used. This study was performed with NMR data simulated from the molecular structure by the SPINUS program. In the design of one test set, simulated data was combined with experimental data. The results support the proposal of linking databases of chemical reactions to experimental or simulated NMR data for automatic classification of reactions and mixtures of reactions. Genome-scale classification of enzymatic reactions from their reaction equation. The MOLMAP descriptor relies on a Kohonen SOM that defines types of bonds on the basis of their physico-chemical and topological properties. The MOLMAP descriptor of a molecule represents the types of bonds available in that molecule. The MOLMAP descriptor of a reaction is defined as the difference between the MOLMAPs of the products and the reactants, and numerically encodes the pattern of bonds that are broken, changed, and made during a chemical reaction. The automatic perception of chemical similarities between metabolic reactions is required for a variety of applications ranging from the computer validation of classification systems, genome-scale reconstruction (or comparison) of metabolic pathways, to the classification of enzymatic mechanisms. Catalytic functions of proteins are generally described by the EC numbers that are simultaneously employed as identifiers of reactions, enzymes, and enzyme genes, thus linking metabolic and genomic information. Different methods should be available to automatically compare metabolic reactions and for the automatic assignment of EC numbers to reactions still not officially classified. In this study, the genome-scale data set of enzymatic reactions available in the KEGG database was encoded by the MOLMAP descriptors, and was submitted to Kohonen SOMs to compare the resulting map with the official EC number classification, to explore the possibility of predicting EC numbers from the reaction equation, and to assess the internal consistency of the EC classification at the class level. A general agreement with the EC classification was observed, i.e. a relationship between the similarity of MOLMAPs and the similarity of EC numbers. At the same time, MOLMAPs were able to discriminate between EC sub-subclasses. EC numbers could be assigned at the class, subclass, and sub-subclass levels with accuracies up to 92%, 80%, and 70% for independent test sets. The correspondence between chemical similarity of metabolic reactions and their MOLMAP descriptors was applied to the identification of a number of reactions mapped into the same neuron but belonging to different EC classes, which demonstrated the ability of the MOLMAP/SOM approach to verify the internal consistency of classifications in databases of metabolic reactions. RFs were also used to assign the four levels of the EC hierarchy from the reaction equation. EC numbers were correctly assigned in 95%, 90%, 85% and 86% of the cases (for independent test sets) at the class, subclass, sub-subclass and full EC number level,respectively. Experiments for the classification of reactions from the main reactants and products were performed with RFs - EC numbers were assigned at the class, subclass and sub-subclass level with accuracies of 78%, 74% and 63%, respectively. In the course of the experiments with metabolic reactions we suggested that the MOLMAP / SOM concept could be extended to the representation of other levels of metabolic information such as metabolic pathways. Following the MOLMAP idea, the pattern of neurons activated by the reactions of a metabolic pathway is a representation of the reactions involved in that pathway - a descriptor of the metabolic pathway. This reasoning enabled the comparison of different pathways, the automatic classification of pathways, and a classification of organisms based on their biochemical machinery. The three levels of classification (from bonds to metabolic pathways) allowed to map and perceive chemical similarities between metabolic pathways even for pathways of different types of metabolism and pathways that do not share similarities in terms of EC numbers. Mapping of PES by neural networks (NNs). In a first series of experiments, ensembles of Feed-Forward NNs (EnsFFNNs) and Associative Neural Networks (ASNNs) were trained to reproduce PES represented by the Lennard-Jones (LJ) analytical potential function. The accuracy of the method was assessed by comparing the results of molecular dynamics simulations (thermal, structural, and dynamic properties) obtained from the NNs-PES and from the LJ function. The results indicated that for LJ-type potentials, NNs can be trained to generate accurate PES to be used in molecular simulations. EnsFFNNs and ASNNs gave better results than single FFNNs. A remarkable ability of the NNs models to interpolate between distant curves and accurately reproduce potentials to be used in molecular simulations is shown. The purpose of the first study was to systematically analyse the accuracy of different NNs. Our main motivation, however, is reflected in the next study: the mapping of multidimensional PES by NNs to simulate, by Molecular Dynamics or Monte Carlo, the adsorption and self-assembly of solvated organic molecules on noble-metal electrodes. Indeed, for such complex and heterogeneous systems the development of suitable analytical functions that fit quantum mechanical interaction energies is a non-trivial or even impossible task. The data consisted of energy values, from Density Functional Theory (DFT) calculations, at different distances, for several molecular orientations and three electrode adsorption sites. The results indicate that NNs require a data set large enough to cover well the diversity of possible interaction sites, distances, and orientations. NNs trained with such data sets can perform equally well or even better than analytical functions. Therefore, they can be used in molecular simulations, particularly for the ethanol/Au (111) interface which is the case studied in the present Thesis. Once properly trained, the networks are able to produce, as output, any required number of energy points for accurate interpolations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Worldwide competitiveness poses enormous challenges on managers, demanding a continuous quest to increase rationality in the use of resources. As a management philosophy, Lean Manufacturing focuses on the elimination of activities that do not create any type of value and therefore are considered waste. For companies to successfully implement the Lean Manufacturing philosophy it is crucial that the human resources of the organization have the necessary training, for which proper tools are required. At the same time, higher education institutions need innovative tools to increase the attractiveness of engineering curricula and develop a higher level of knowledge among students, improving their employability. This paper describes how Lean Learning Academy, an international collaboration project between five EU universities and five companies, from SME to Multinational/Global companies, developed and applied an innovative training programme for Engineers on Lean Manufacturing, a successful alternative to the traditional teaching methods in engineering courses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, para a obtenção do grau de Mestre em Engenharia Informática