133 resultados para anthrone glycoside
Resumo:
Behavioral and nutritional effect of rutin (quercetin 3-O-rutinosídeo) on Anticarsia gemmatalis Hübner (Lep.: Noctuidae), a major soybean defoliator in Brazil, was evaluated from the third instar to pupation. Rutin is one of the flavonol glycosides identified in the leaves of the wild soybean PI 227687. Larval weight and amount of ingested food decreased as rutin concentration in the diet increase. An interactive effect between feeding time and diet (treatment) was observed on insect growth; when larvae fed on pure-diet, feeding time elongation resulted in heavier pupae. Differently, the weight of larvae fed on rutin-diet remained almost stable, in spite of eating for longer. A. gemmatalis growth was negatively influenced by rutin-diet not only by feeding deterrence but also by post-ingestive effect on insect growth, since after adjustment of pupal weight by the amount of ingested food (covariate), the effect of diet remained significant. Rutin negatively influenced A. gemmatalis growth as result of pre-ingestive effect, indicated by reduction in food consumption, and post-ingestive effect, indicated by lower conversion of ingested food into body mass and food assimilation.
Resumo:
The aim of this work was to quantify the protein, starch and total sugars levels during histodifferentiation and development of somatic embryos of Acca sellowiana Berg. For histological observations, the samples were dehydrated in a battery of ethanol, embedded in historesin and stained with toluidine blue (morphology), coomassie blue (protein bodies) and periodic acid-Schiff (starch). Proteins were extracted using a buffer solution, precipitated using ethanol and quantified using the Bradford reagent. Total sugars were extracted using a methanol-chloroform-water (12:5:3) solution and quantified by a reaction with anthrone at 0.2%. Starch was extracted using a 30% perchloric acid solution and quantified by a reaction with anthrone at 0.2%. During the somatic embryogenesis' in vitro morphogenesis and differentiation processes, the total protein levels decreased and the soluble sugars levels increased during the first 30 days in culture and remained stable until the 120th day. On the other hand, total protein levels increased according to the progression in the developmental stages of the somatic embryos. The levels of total sugars and starch increased in the heart and cotyledonary stages, and decreased in the torpedo and pre-cotyledonary stages. These compounds play a central role in the development of somatic embryos of Acca sellowiana.
Resumo:
A straightforward methodology for the synthesis of conjugates between a cytotoxic organometallic ruthenium(II) complex and amino- and guanidinoglycosides, as potential RNA-targeted anticancer compounds, is described. Under microwave irradiation, the imidazole ligand incorporated on the aminoglycoside moiety (neamine or neomycin) was found to replace one triphenylphosphine ligand from the ruthenium precursor [(η6-p-cym)RuCl(PPh3)2]+, allowing the assembly of the target conjugates. The guanidinylated analogue was easily prepared from the neomycin-ruthenium conjugate by reaction with N,N′-di-Boc-N″-triflylguanidine, a powerful guanidinylating reagent that was compatible with the integrity of the metal complex. All conjugates were purified by semipreparative high-performance liquid chromatography (HPLC) and characterized by electrospray ionization (ESI) and matrix-assisted laser desorptionionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and NMR spectroscopy. The cytotoxicity of the compounds was tested in MCF-7 (breast) and DU-145 (prostate) human cancer cells, as well as in the normal HEK293 (Human Embryonic Kidney) cell line, revealing a dependence on the nature of the glycoside moiety and the type of cell (cancer or healthy). Indeed, the neomycinruthenium conjugate (2) displayed moderate antiproliferative activity in both cancer cell lines (IC50 ≈ 80 μM), whereas the neamine conjugate (4) was inactive (IC50 ≈ 200 μM). However, the guanidinylated analogue of the neomycinruthenium conjugate (3) required much lower concentrations than the parent conjugate for equal effect (IC50 = 7.17 μM in DU-145 and IC50 = 11.33 μM in MCF-7). Although the same ranking in antiproliferative activity was found in the nontumorigenic cell line (3 2 > 4), IC50 values indicate that aminoglycoside-containing conjugates are about 2-fold more cytotoxic in normal cells (e.g., IC50 = 49.4 μM for 2) than in cancer cells, whereas an opposite tendency was found with the guanidinylated conjugate, since its cytotoxicity in the normal cell line (IC50 = 12.75 μM for 3) was similar or even lower than that found in MCF-7 and DU-145 cancer cell lines, respectively. Cell uptake studies performed by ICP-MS with conjugates 2 and 3 revealed that guanidinylation of the neomycin moiety had a positive effect on accumulation (about 3-fold higher in DU-145 and 4-fold higher in HEK293), which correlates well with the higher antiproliferative activity of 3. Interestingly, despite the slightly higher accumulation in the normal cell than in the cancer cell line (about 1.4-fold), guanidinoneomycinruthenium conjugate (3) was more cytotoxic to cancer cells (about 1.8-fold), whereas the opposite tendency applied for neomycinruthenium conjugate (2). Such differences in cytotoxic activity and cellular accumulation between cancer and normal cells open the way to the creation of more selective, less toxic anticancer metallodrugs by conjugating cytotoxic metal-based complexes such as ruthenium(II) arene derivatives to guanidinoglycosides.
Resumo:
A straightforward methodology for the synthesis of conjugates between a cytotoxic organometallic ruthenium(II) complex and amino- and guanidinoglycosides, as potential RNA-targeted anticancer compounds, is described. Under microwave irradiation, the imidazole ligand incorporated on the aminoglycoside moiety (neamine or neomycin) was found to replace one triphenylphosphine ligand from the ruthenium precursor [(η6-p-cym)RuCl(PPh3)2]+, allowing the assembly of the target conjugates. The guanidinylated analogue was easily prepared from the neomycin-ruthenium conjugate by reaction with N,N′-di-Boc-N″-triflylguanidine, a powerful guanidinylating reagent that was compatible with the integrity of the metal complex. All conjugates were purified by semipreparative high-performance liquid chromatography (HPLC) and characterized by electrospray ionization (ESI) and matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and NMR spectroscopy. The cytotoxicity of the compounds was tested in MCF-7 (breast) and DU-145 (prostate) human cancer cells, as well as in the normal HEK293 (Human Embryonic Kidney) cell line, revealing a dependence on the nature of the glycoside moiety and the type of cell (cancer or healthy). Indeed, the neomycin-ruthenium conjugate (2) displayed moderate antiproliferative activity in both cancer cell lines (IC50 ≈ 80 μM), whereas the neamine conjugate (4) was inactive (IC50 ≈ 200 μM). However, the guanidinylated analogue of the neomycin-ruthenium conjugate (3) required much lower concentrations than the parent conjugate for equal effect (IC50 = 7.17 μM in DU-145 and IC50 = 11.33 μM in MCF-7). Although the same ranking in antiproliferative activity was found in the nontumorigenic cell line (3 2 > 4), IC50 values indicate that aminoglycoside-containing conjugates are about 2-fold more cytotoxic in normal cells (e.g., IC50 = 49.4 μM for 2) than in cancer cells, whereas an opposite tendency was found with the guanidinylated conjugate, since its cytotoxicity in the normal cell line (IC50 = 12.75 μM for 3) was similar or even lower than that found in MCF-7 and DU-145 cancer cell lines, respectively. Cell uptake studies performed by ICP-MS with conjugates 2 and 3 revealed that guanidinylation of the neomycin moiety had a positive effect on accumulation (about 3-fold higher in DU-145 and 4-fold higher in HEK293), which correlates well with the higher antiproliferative activity of 3. Interestingly, despite the slightly higher accumulation in the normal cell than in the cancer cell line (about 1.4-fold), guanidinoneomycin-ruthenium conjugate (3) was more cytotoxic to cancer cells (about 1.8-fold), whereas the opposite tendency applied for neomycin-ruthenium conjugate (2). Such differences in cytotoxic activity and cellular accumulation between cancer and normal cells open the way to the creation of more selective, less toxic anticancer metallodrugs by conjugating cytotoxic metal-based complexes such as ruthenium(II) arene derivatives to guanidinoglycosides.
Resumo:
There are NMR data of ¹H and 13C of the iridoid plumieride, but controversy related to the assignments of the protons H-3 or H-10 and carbons C-6 or C-7 and C-3 or C-10 are described in the literature. There are a little discussion regarding to the resonance assignment of protons of the glycoside unity. Analysis based on 2D shift correlated NMR spectra (COSY, HETCOR, HETCORLR) and NOE difference ¹H NMR spectra allowed to assign unambigously the chemical shift of ¹H and 13C of plumieride which has been found in the literature with non coincident values.
Resumo:
A mixture containing sitosterol and stigmasterol; a new triterpene 3-epi-ursolic acid; another triterpene mixture comprising a-amyrin, b-amyrin and lupeol; verbascoside, a phenylpropanoid glycoside; and lespedin, a glycosyl flavonoid, were isolated. The less polar compounds (steroids and triterpenoids) were isolated from the hexane partition of the crude ethanolic extract while the more polar ones (phenylpropanoid glycoside and glycosyl flavonoid) were isolated from the ethyl acetate partition of the same extract. The structures of all compounds were established using modern spectrometric methods of elucidation. The spectroscopic data of Lespedin, a rare dirhamnosylflavonol with hypotensor activity and of the triterpene, 3-epi-ursolic acid, are also reported.
Resumo:
Chemical studies of the leaves of L. divaricata afforded 3beta-p-hydroxybenzoyl-tormentic acid, a triterpene with an ursene-type skeleton, a mixture whose main compound was an oleanene derivative, the maslinic acid, a C-glycoside flavone, vitexin and glucopyranosylsitosterol. A flavonoid, characterized as (-)-epicatechin, which belongs to the flavan-3-ol class, was isolated from the stem's bark. The structures of the compounds were elucidated by spectroscopic analysis. The antibacterial, antifungal and antiproliferative activities of the crude methanolic extracts of leaves and bark were evaluated and the antibacterial properties of the fractions of the barks were also investigated.
Resumo:
A new triterpene, 3beta,6beta,21beta-trihydroxyolean-12-ene and a new iridoid, 8alpha-methyl-8beta-hydroxy-6beta-(3',4'-dimethoxy)benzoyloxy-1 alpha,3alpha-dimethoxy-octahydro-cyclopenta[c]pyran were isolated from the trunk bark of a specimen of Tabebuia heptaphylla (Bignoniaceae) collected in the "Pantanal" of Mato Grosso do Sul, Brazil. Twelve known compounds were also obtained in this work, comprising four iridoids, 6-O-p-hydroxybenzoylajugol, 6-O-p-methoxybenzoylajugol, 6-O-3",4"-dimethoxybenzoylajugol, 8alpha-methyl-8beta-hydroxy-6beta-(4'-hydroxy)benzoyloxy-1alpha,3 alpha-dimethoxy-octahydro-cyclopenta[c]pyran, a cyclopentene dialdehyde, 2-formyl-5-(3',4'-dimethoxybenzoyloxy)-3-methyl-2-cyclopentene-1-acetaldehyde, a phenylethanoid glycoside, verbascoside and three benzoic acid derivatives, p-hydroxybenzoic, p-methoxybenzoic and 3,4-dimethoxybenzoic acids, in addition to squalene, sitostenone and sitosterol. The antioxidant properties of the isolated compounds were also evaluated in this work.
Resumo:
Phenylpropanoid glycoside verbascoside was isolated and identified from the ethyl acetate fraction of the aerial parts of Buddleja stachyoides Cham. & Schltdl. by 1H-NMR. A method using high-performance liquid chromatography has been developed and validated for determination of verbascoside in alcoholic crude extract of the aerial parts of B. stachyoides. Analysis was performed on a Phenomenex® Gemini-NX C18 analytical column (250 mm × 4.6 mm; 5 µm) using a mobile phase (pump A - aqueous solution containing H2SO4 (0.01 M), H3PO4 (0.4%), and (C2H5)2NH (0.4%); pump B - methanol:aqueous (95:5) solution containing H2SO4 (0.05 M), H3PO4 (2%), and (C2H5)2NH (0.2%); pump C - acetonitrile:aqueous (90:10) solution containing H2SO4 (0.05 M) and H3PO4 (2%)) and a diode array detector at 325 nm. The method was validated in accordance with ANVISA guidelines and may be applied to quality control of herbal medicine with aerial parts of B. stachyoides.
Resumo:
In the last ten years, the interest in natural and semi-synthetic cucurbitacin derivatives has increased, primarily due their cytotoxic and anti-tumoral activities. However, the isolation of glycosylated cucurbitacins has been difficult due the presence of β-glucosidase enzyme. With the aim of obtaining new glycosylated derivatives, the glycosylation of dihydrocucurbitacin B under Köenigs-Knorr and imidate reaction conditions was studied. Novel glycoside derivatives 16-(1,2-orthoacetate-3,4,6-tri-O-acetyl-α-D-glucopyranosyl)-dihydrocucurbitacin B (2), 2-O-β-D-2,3,4,6-tetra-O-acetyl-galactopyranosyl dihydrocucurbitacin B (3) and 2-O-β-D-galactopyranosyl dihydrocucurbitacin B (4) were synthesized for the first time in 17% (2 and 3) and 48% (4) yields.
Resumo:
The bioassay-guided fractionation of the ethanol extract from Nectandra grandiflora leaves led to the isolation of two flavonol glycosides which inhibited the bleaching of beta -carotene on the TLC assay. Both compounds had their molecular structures elucidated by means of extensive use of uni- and bidimensional NMR techniques and were identified as 3-O-beta -rhamnosylkaempferol and 3-O-beta -rhamnosylquercetine.
Resumo:
Neutral alpha-mannosidase and lysosomal MAN2B1 alpha-mannosidase belong to glycoside hydrolase family 38, which contains essential enzymes required for the modification and catabolism of asparagine-linked glycans on proteins. MAN2B1 catalyses lysosomal glycan degradation, while neutral α-mannosidase is most likely involved in the catabolism of cytosolic free oligosaccharides. These mannose containing saccharides are generated during glycosylation or released from misfolded glycoproteins, which are detected by quality control in the endoplasmic reticulum. To characterise the biological function of human neutral α-mannosidase, I cloned the alpha-mannosidase cDNA and recombinantly expressed the enzyme. The purified enzyme trimmed the putative natural substrate Man9GlcNAc to Man5GlcNAc, whereas the reducing end GlcNAc2 limited trimming to Man8GlcNAc2. Neutral α-mannosidase showed highest enzyme activity at neutral pH and was activated by the cations Fe2+, Co2+ and Mn2+, Cu2+ in turn had a strong inhibitory effect on alpha-mannosidase activity. Analysis of its intracellular localisation revealed that neutral alpha-mannosidase is cytosolic and colocalises with proteasomes. Further work showed that the overexpression of neutral alpha-mannosidase affected the cytosolic free oligosaccharide content and led to enhanced endoplasmic reticulum associated degradation and underglycosylation of secreted proteins. The second part of the study focused on MAN2B1 and the inherited lysosomal storage disorder α-mannosidosis. In this disorder, deficient MAN2B1 activity is associated with mutations in the MAN2B1 gene. The thesis reports the molecular consequences of 35 alpha-mannosidosis associated mutations, including 29 novel missense mutations. According to experimental analyses, the mutations fall into four groups: Mutations, which prevent transport to lysosomes are accompanied with a lack of proteolytic processing of the enzyme (groups 1 and 3). Although the rest of the mutations (groups 2 and 4) allow transport to lysosomes, the mutated proteins are less efficiently processed to their mature form than is wild type MAN2B1. Analysis of the effect of the mutations on the model structure of human lysosomal alpha-mannosidase provides insights on their structural consequences. Mutations, which affect amino acids important for folding (prolines, glycines, cysteines) or domain interface interactions (arginines), arrest the enzyme in the endoplasmic reticulum. Surface mutations and changes, which do not drastically alter residue volume, are tolerated better. Descriptions of the mutations and clinical data are compiled in an α-mannosidosis database, which will be available for the scientific community. This thesis provides a detailed insight into two ubiquitous human alpha-mannosidases. It demonstrates that neutral alpha-mannosidase is involved in the degradation of cytosolic oligosaccharides and suggests that the regulation of this α-mannosidase is important for maintaining the cellular homeostasis of N-glycosylation and glycan degradation. The study on alpha-mannosidosis associated mutations identifies multiple mechanisms for how these mutations are detrimental for MAN2B1 activity. The α-mannosidosis database will benefit both clinicians and scientific research on lysosomal alpha‑mannosidosis.
Resumo:
Phosphorylated-cyclic adenosine monophosphate response element-binding protein (Phospho-CREB) has an important role in the pathogenesis of myocardial ischemia. We isolated the iridoid glycoside cornin from the fruit of Verbena officinalis L, investigated its effects against myocardial ischemia and reperfusion (I/R) injury in vivo, and elucidated its potential mechanism in vitro. Effects of cornin on cell viability, as well as expression of phospho-CREB and phospho-Akt in hypoxic H9c2 cells in vitro, and myocardial I/R injury in vivo, were investigated. Cornin attenuated hypoxia-induced cytotoxicity significantly in H9c2 cells in a concentration-dependent manner. Treatment of H9c2 cells with cornin (10 µM) blocked the reduction of expression of phospho-CREB and phospho-Akt in a hypoxic condition. Treatment of rats with cornin (30 mg/kg, iv) protected them from myocardial I/R injury as indicated by a decrease in infarct volume, improvement in hemodynamics, and reduction of severity of myocardial damage. Cornin treatment also attenuated the reduction of expression of phospho-CREB and phospho-Akt in ischemic myocardial tissue. These data suggest that cornin exerts protective effects due to an increase in expression of phospho-CREB and phospho-Akt.
Resumo:
The goal of this thesis was to study factors related to the development of Brassica juncea as a sustainable nematicide. Brassica juncea is characterized by the glycoside (glucosinolate) sinigrin. Various methods were developed for the determination of sinigrin in Brassica juncea tissue extracts. Sinigrin concentrations in plant tissues at various stages of growth were monitored. Sinigrin enzymatically breaks down into allylisothiocyanate (AITC). AITC is unstable in aqueous solution and degradation was studied in water and in soil. Finally, the toxicity of AITC against the root-lesion nematode (Pratylenchus penetrans) was determined. A method was developed to extract sinigrin from whole Brassica j uncea tissues. The optimal time of extraction wi th boiling phosphate buffer (0.7mM, pH=6.38) and methanol/water (70:30 v/v) solutions were both 25 minutes. Methanol/water extracted 13% greater amount of sinigrin than phosphate buffer solution. Degradation of sinigrin in boiling phosphate buffer solution (0.13%/minute) was similar to the loss of sinigrin during the extraction procedure. The loss of sinigrin from boiling methanol/water was estimated to be O.Ol%/minute. Brassica juncea extract clean up was accomplished by an ion-pair solid phase extraction (SPE) method. The recovery of sinigrin was 92.6% and coextractive impurities were not detected in the cleaned up extract. Several high performance liquid chromatography (HPLC) methods were developed for the determination of sinigrin. All the developed methods employed an isocratic mobile phase system wi th a low concentration of phosphate buffer solution, ammonium acetate solution or an ion-pair reagent solution. A step gradient system was also developed. The method involved preconditioning the analytical column with phosphate buffer solution and then switching the mobile phase to 100% water after sample injection.Sinigrin and benzyl-glucosinolate were both studied by HPLC particle beam negative chemical ionization mass spectrometry (HPLCPB- NCI-MS). Comparison of the mass spectra revealed the presence of fragments arising from the ~hioglucose moiety and glucosinolate side-chain. Variation in the slnlgrin concentration within Brassica juncea plants was studied (Domo and Cutlass cuItivars). The sinigrin concentration in the top three leaves was studied during growth of each cultivar. For Cutlass, the minimum (200~100~g/g) and maximum (1300~200~g/g) concentrations were observed at the third and seventh week after planting, respectively. For Domo, the minimum (190~70~g/g) and maximum (1100~400~g/g) concentrations were observed at the fourth and eighth week after planting, respectively. The highest sinigrin concentration was observed in flower tissues 2050±90~g/g and 2300±100~g/g for Cutlass and Domo cultivars, respectively. Physical properties of AITC were studied. The solubility of AITC in water was determined to be approximately 1290~g/ml at 24°C. An HPLC method was developed for the separation of degradation compounds from aqueous AITC sample solutions. Some of the degradation compounds identified have not been reported in the literature: allyl-thiourea, allyl-thiocyanate and diallyl-sulfide. In water, AITC degradation to' diallyl-thiourea was favored at basic pH (9.07) and degradation to diallyl-sulfide was favored at acidic pH (4 . 97). It wap necessary to amend the aqueous AITC sample solution with acetonitrile ?efore injection into the HPLC system. The acetonitrile amendment considerably improved AITC recovery and the reproducibility of the results. The half-life of aqueous AITC degradation at room temperature did not follow first-order kinetics. Beginning with a 1084~g/ml solution, the half-life was 633 hours. Wi th an ini tial AITC concentration of 335~g/ml the half-life was 865 hours. At 35°C the half-life AITC was 76+4 hours essentially independent of the iiisolution pH over the range of pH=4.97 to 9.07 (1000~g/ml). AITC degradation was also studied in soil at 35°C; after 24 hours approximately 75% of the initial AITC addition was unrecoverable by water extraction. The ECso of aqueous AITC against the root-lesion nematode (Pratylenchus penetrans) was determined to be approximately 20~g/ml at one hour exposure of the nematode to the test solution. The toxicological study was also performed with a myrosinase treated Brassica juncea extract. Myrosinase treatment of the Brassica juncea extract gave nearly quantitative conversion of sinigrin into AITC. The myrosinase treated extract was of the same efficacy as an aqueous AITC solution of equivalent concentration. The work of this thesis was focused upon understanding parameters relevant to the development of Brassica juncea as a sustainable nematicide. The broad range of experiments were undertaken in support of a research priority at Agriculture and Agri-Food Canada.
Resumo:
Nous avons démontré l’utilité du groupement protecteur tert-butylsulfonyle (N-Bus) pour la chimie des acides aminés et des peptides. Celui-ci est préparé en deux étapes, impliquant la réaction d’une amine avec le chlorure de tert-butylsulfinyle, suivie par l’oxydation par du m-CPBA, pour obtenir les tert-butylsulfonamides correspondants avec d’excellents rendements. Le groupement N-Bus peut être clivé par traitement avec 0.1 N TfOH/DCM/anisole à 0oC en 10h pour régénérer le sel d’ammonium. Une variété d’acides aminés N-Bus protégés ainsi que d’autres aminoacides peuvent alors être utilisés pour préparer divers dipeptides et tripeptides. A l’exception du groupe N-Fmoc, les conditions de déprotection du groupe N-Bus clivent également les groupements N-Boc, N-Cbz et O-Bn. Une déprotection sélective et orthogonale des groupes N-Boc, N-Cbz, N-Fmoc et O-Bn est également possible en présence du groupe protecteur N-Bus. Le nouvel acide aminé non-naturel (3R, 2R) 3–méthyl-D-leucine (β-Me-Leu) et son régioisomère 2-méthyle ont été synthétisés par ouverture d’une N-Ts aziridine en présence d’un excès de LiMe2Cu. Chacun des régioisomères du mélange (1:1,2) a été converti en la méthylleucine correspondante, puis couplé à l’acide D-phényllactique puis au motif 2-carboxyperhydroindole 4-amidinobenzamide en présence de DEPBT. Des élaborations ultérieures ont conduit à des analogues peptidiques non-naturels d’aeruginosines telles que la chlorodysinosine A. Les deux analogues ont ensuite été évalués pour leur activité inhibitrice de la thrombine et la trypsine. La présumée aeruginosine 3-sulfate 205B et son anomère β ont été synthétisés avec succès à partir de 5 sous-unités : la 3-chloroleucine, l’acide D-phényllactique, le D-xylose, le 2-carboxy-6-hydroxyoctahydroindole et l’agmatine. La comparaison des données RMN 1H et 13C reportées avec celles obtenues avec l’aeruginosine synthétique 205B révèle une différence majeure pour la position du groupe présumé 3'-sulfate sur l’unité D-xylopyranosyle. Nous avons alors synthétisés les dérivés méthyl-α-D-xylopyranosides avec un groupement sulfate à chacune des positions hydroxyles, afin de démontrer sans ambiguïté la présence du sulfate en position C-4' par comparaison des données spectroscopiques RMN 1H et 13C. La structure de l’aeruginosine 205B a alors été révisée. Une des étapes-clés de cette synthèse consiste en la formation du glycoside avec le groupe hydroxyle en C-6 orienté en axial sur la sous-unité Choi. Le 2-thiopyridylcarbonate s’est avéré une méthode efficace pour l’activation anomérique. Le traitement par AgOTf et la tétraméthylurée en solution dans un mélange éther-DCM permet d’obtenir l’anomère α désiré, qui peut alors être aisément séparé de l’anomère β par chromatographie