942 resultados para anterior hypothalamic nucleus


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of our study is to investigate the effects of chronic estrogen administration on same-sex interactions during exposure to a social stressor and on oxytocin (OT) levels in prairie voles (Microtus orchrogaster). Estrogen and OT are two hormones known to be involved with social behavior and stress. Estogen is involved in the transcription of OT and its receptor. Because of this, it is generally thought that estrogen upregulates OT, but evidence to support this assumption is weak. While estrogen has been shown to either increase or decrease stress, OT has been shown to have stress-dampening properties. The goal of our experiment is to determine how estrogen affects OT levels as well as behavior in a social stressor in the voles. In addition, estrogen is required for many opposite-sex interactions, but little is known about its influence on same-sex interactions. We hypothesized that prairie voles receiving chronic estrogen injections would show an increase in OT levels in the brain and alter behavior in response to a social stressor called the resident-intruder test. To test this hypothesis, 73 female prairie voles were ovariectomized and then administered daily injections of estrogen (0.05 ¿g in peanut oil, s.c.) or vehicle for 8 days. On the final day of injections, half of the voles were given the resident-intruder test, a stressful 5 min interaction with a same-sex stranger. Their behavior was video-recorded. These animals were then sacrificed either 10 minutes or 60 minutes after the conclusion of the test. Half of the animals (no stress group) were not given the resident-intruder test. After sacrifice, trunk blood and brains were collected from the animals. Videos of the resident-intruder tests were analyzed for pro-social and aggressive behavior. Density of OT-activated neurons in the brain was measured via pixel count using immunohistochemistry. No differences were found in pro-social behavior (focal sniffing, p = 0.242; focal initiated sniffing p = 0.142; focal initiated sniffing/focal sniffing, p = 0.884) or aggressive behavior (total time fighting, p= 0.763; number of fights, p= 0.148; number of strikes, p = 0.714). No differences were found in activation of OT neurons in the brain, neither in the anterior paraventricular nucleus (PVN) (pixel count p= 0.358; % area that contains pixelated neurons p = 0.443) nor in the medial PVN (pixel count p= 0.999; % area that contains pixelated neurons p = 0.916). These results suggest that estrogen most likely does not directly upregulate OT and that estrogen does not alter behavior in stressful social interactions with a same-sex stranger. Estrogen may prepare the animal to respond to OT, instead of increasing the production of the peptide itself, suggesting that we need to shift the framework in which we consider estrogen and OT interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here, we investigate the involvement of two sites of plasticity in the learning and expression of a simple associative motor behavior—the classically conditioned eyelid response. While previous studies clearly demonstrate that lesions of the anterior interpositus nucleus of the cerebellum abolish learned responses and prevent subsequent learning, studies investigating the effects of lesions of the cerebellar cortex on learning and retention have produced discrepant results. We complement ablative lesion studies of the cortex with the use of reversible, pharmacological blockade of cerebellar cortical transmission to investigate the role of the cerebellar cortex in eyelid conditioning. We demonstrate that both pharmacological blockade as well as focused ablative lesions of the cortex abolish timed responses and unmask responses with a fixed, short latency that are not displayed by the intact animal. Pharmacological blockade of cerebellar cortex output at various stages of acquisition and extinction reveals appropriate, learning dependent changes in the amplitude and probability of short latency responses during training. Acquisition of both short latency as well as timed responses is prevented by ablative lesions of the anterior lobe of the cerebellar cortex. These convergent results from technically distinct methods of removing the influence of the cerebellar cortex from conditioned behavior are consistent with the proposal that (1) eyelid conditioning engages two cerebellar sites of plasticity-one in the cortex and one in the anterior interpositus nucleus, (2) plasticity in the cerebellar cortex is necessary for proper response timing, (3) plasticity in the nucleus mediates the short latency responses unmasked by lesions of the cerebellar cortex, and (4) cerebellar cortical output is necessary for the induction of plasticity in the nucleus. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In tetrapods, only one gene encoding a somatostatin precursor has been identified so far. The present study reports the characterization of the cDNA clones that encode two distinct somatostatin precursors in the brain of the frog Rana ridibunda. The cDNAs were isolated by using degenerate oligonucleotides based on the sequence of the central region of somatostatin to screen a frog brain cDNA library. One of the cDNAs encodes a 115-amino acid protein (prepro-somatostatin-14; PSS1) that exhibits a high degree of structural similarity with the mammalian somatostatin precursor. The other cDNA encodes a 103-amino acid protein (prepro-[Pro2, Met13]somatostatin-14; PSS2) that contains the sequence of the somatostatin analog (peptide SS2) at its C terminus, but does not exhibit appreciable sequence similarity with PSS1 in the remaining region. In situ hybridization studies indicate differential expression of the PSS1 and PSS2 genes in the septum, the lateral part of the pallium, the amygdaloid complex, the posterior nuclei of the thalamus, the ventral hypothalamic nucleus, the torus semicircularis and the optic tectum. The somatostatin variant SS2 was significantly more potent (4-6 fold) than somatostatin itself in displacing [125I-Tyr0, D-Trp8] somatostatin-14 from its specific binding sites. The present study indicates that the two somatostatin variants could exert different functions in the frog brain and pituitary. These data also suggest that distinct genes encoding somatostatin variants may be expressed in the brain of other tetrapods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The localization of sites of memory formation within the mammalian brain has proven to be a formidable task even for simple forms of learning and memory. Recent studies have demonstrated that reversibly inactivating a localized region of cerebellum, including the dorsal anterior interpositus nucleus, completely prevents acquisition of the conditioned eye-blink response with no effect upon subsequent learning without inactivation. This result indicates that the memory trace for this type of learning is located either (i) within this inactivated region of cerebellum or (ii) within some structure(s) efferent from the cerebellum to which output from the interpositus nucleus ultimately projects. To distinguish between these possibilities, two groups of rabbits were conditioned (by using two conditioning stimuli) while the output fibers of the interpositus (the superior cerebellar peduncle) were reversibly blocked with microinjections of the sodium channel blocker tetrodotoxin. Rabbits performed no conditioned responses during this inactivation training. However, training after inactivation revealed that the rabbits (trained with either conditioned stimulus) had fully learned the response during the previous inactivation training. Cerebellar output, therefore, does not appear to be essential for acquisition of the learned response. This result, coupled with the fact that inactivation of the appropriate region of cerebellum completely prevents learning, provides compelling evidence supporting the hypothesis that the essential memory trace for the classically conditioned eye-blink response is localized within the cerebellum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using an antibody highly specific for D-serine conjugated to glutaraldehyde, we have localized endogenous D-serine in rat brain. Highest levels of D-serine immunoreactivity occur in the gray matter of the cerebral cortex, hippocampus, anterior olfactory nucleus, olfactory tubercle, and amygdala. Localizations of D-serine immunoreactivity correlate closely with those of D-serine binding to the glycine modulatory site of the N-methyl-D-aspartate (NMDA) receptor as visualized by autoradiography and are inversely correlated to the presence of D-amino acid oxidase. D-Serine is enriched in process-bearing glial cells in neuropil with the morphology of protoplasmic astrocytes. In glial cultures of rat cerebral cortex, D-serine is enriched in type 2 astrocytes. The release of D-serine from these cultures is stimulated by agonists of non-NMDA glutamate receptors, suggesting a mechanism by which astrocyte-derived D-serine could modulate neurotransmission. D-Serine appears to be the endogenous ligand for the glycine site of NMDA receptors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The accessory optical system, the pretectal complex, and superior colliculus are important control centers in a variety of eye movement, being extremely necessary for image formation, consequently to visual perception. The accessory optical system is constituted by the nuclei: dorsal terminal nucleus, lateral terminal nucleus, medial terminal nucleus and interstitial nucleus of the posterior superior fasciculus. From a functional point of view they contribute to the image stabilization, participating in the visuomotor activity where all system cells respond to slow eye movements and visual stimuli, which is important for the proper functioning of other visual systems. The pretectal complex comprises a group of nuclei situated in mesodiencephalic transition, they are: anterior pretectal nucleus, posterior pretectal nucleus, medial pretectal nucleus, olivary pretectal nucleus and the nucleus of the optic tract, all retinal projection recipients and functionally are related to the route of the pupillary light reflex and the optokinetic nystagmus. The superior colliculus is an important subcortical visual station formed by layers and has an important functional role in the control of eye movements and head in response to multisensory stimuli. Our aim was to make a mapping of retinal projections that focus on accessory optical system, the nuclei of pretectal complex and the superior colliculus, searching mainly for pretectal complex, better delineation of these structures through the anterograde tracing with the B subunit of cholera toxin (CTb) followed by immunohistochemistry and characterized (measured diameter) synaptic buttons present on the fibers / terminals of the nucleus complex pré-tectal. In our results accessory optical system, including a region which appears to be medial terminal nucleus and superior colliculus, were strongly marked by fibers / terminals immunoreactive CTb as well as pretectal complex in the nucleus: optic tract, olivary pretectal nucleus, anterior pretectal nucleus and posterior pretectal nucleus. According to the characterization of the buttons it was possible to make a better definition of these nucleus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

arginine-vasopressin in the parvocellular neurons of the hypothalamic paraventricular nucleus is known to play an important role in the control of the hypothalamo-pituitary-adrenal axis. In the present study, we verify plasma corticosterone levels, the distribution of glucocorticoid receptor- and arginine-vasopressin-positive neurons, and the co-localization of both glucocorticoid receptors and arginine-vasopressin in neurons in the anterior and medial parvocellular subdivisions of the paraventricular nucleus after manipulations of the hypothalamus-pituitary-adrenal axis. Normal, sham surgery, and adrenalectomized male rats were subjected to intraperitoneal injections of saline or dexamethasone to measure plasma corticosterone levels by a radioimmunoassay. We also examined arginine-vasopressin and glucocorticoid receptor immunofluorescence in sections from the paraventricular nucleus. Our results showed that the immunoreactivity of arginine-vasopressin neurons increased in the anterior parvocellular subdivision and decreased in the medial parvocellular subdivision from adrenalectomized rats treated with dexamethasone. On the other hand, we showed that the immunoreactivity of glucocorticoid receptors increased in the anterior and medial parvocellular subdivisions of these same animals. However, the immunoreactivity of glucocorticoid receptors is higher in the medial parvocellular than anterior parvocellular subdivision. The co-localization of arginine-vasopressin and glucocorticoid receptors was found only in the medial parvocellular subdivision. These findings indicate that glucocorticoids have direct actions on arginine-vasopressin-positive neurons in the medial parvocellular but not anterior parvocellular subdivision. There is a differentiated pattern of arginine-vasopressin-positive neuron expression between the anterior and medial parvocellular subdivisions. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The dorsal premammillary nucleus (PMd) has a critical role on the expression of defensive responses to predator odor. Anatomical evidence suggests that the PMd should also modulate memory processing through a projecting branch to the anterior thalamus. By using a pharmacological blockade of the PMd with the NMDA-receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5), we were able to confirm its role in the expression of unconditioned defensive responses, and further revealed that the nucleus is also involved in influencing associative mechanisms linking predatory threats to the related context. We have also tested whether olfactory fear conditioning, using coffee odor as CS, would be useful to model predator odor. Similar to cat odor, shock-paired coffee odor produced robust defensive behavior during exposure to the odor and to the associated context. Shock-paired coffee odor also up-regulated Fos expression in the PMd, and, as with cat odor, we showed that this nucleus is involved in the conditioned defensive responses to the shock-paired coffee odor and the contextual responses to the associated environment. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The amygdala, the dorsal periaqueductal gray (dPAG), and the media] hypothalamus have long been recognized to be a neural system responsible for the generation and elaboration of unconditioned fear in the brain. It is also well known that this neural substrate is under a tonic inhibitory control exerted by GABA mechanisms. However, whereas there is a growing body of evidence to suggest that the amygdala and dPAG are also able to integrate conditioned fear, it is still unclear, however, how the distinct hypothalamic nuclei participate in fear conditioning. In this work we aimed to examine the extent to which the gabaergic mechanisms of this brain region are involved in conditioned fear using the fear-potentiated startle (FPS). Muscimol, a GABA-A receptor agonist, and semicarbazide, an inhibitor of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD), were used as an enhancer and inhibitor of the GABA mechanisms, respectively. Muscimol and semicarbazide were injected into the anterior hypothalamus (AHN). the dorsomedial part of the ventromedial nucleus (VMHDM), the dorsomedial (DMH) or the dorsal premammillary (PMD) nuclei of male Wistar rats before test sessions of the fear conditioning paradigm. The injections into the DMH and PMD did not produce any significant effects on FPS. On the other hand, muscimol injections into the AHN and VMHDM caused significant reduction in FPS. These results indicate that injections of muscimol and semicarbazide into the DMH and PMD fail to change the FPS, whereas the enhancement of the GABA transmission in the AHN and VMHDM produces a reduction of the conditioned fear responses. On the other hand, the inhibition of this transmission led to an increase of this conditioned response in the AHN. Thus, whereas DMH and PMD are known to be part of the caudal-most region of the medial hypothalamic defensive system, which integrates unconditioned fear, systems mediating conditioned fear select the AHN and VMHDM nuclei that belong to the rostral-most portion of the hypothalamic defense area. Thus, distinct subsets of neurons in the hypothalamus could mediate different aspects of the defensive responses. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report on the cardiovascular effects of L-glutamate (L-glu) microinjection into the hypothalamic paraventricular nucleus (PVN) as well as the mechanisms involved in their mediation. L-glu microinjection into the PVN caused dose-related pressor and tachycardiac responses in unanesthetized rats. These responses were blocked by intravenous (i.v.) pretreatment with the ganglion blocker pentolinium (PE; 5 mg/kg), suggesting sympathetic mediation. Responses to L-glu were not affected by local microinjection of the selective non-NMDA receptor antagonist NBQX (2 nmol) or by local microinjection of the selective NMDA receptor antagonist LY235959 (LY; 2 nmol). However, the tachycardiac response was changed to a bradycardiac response after treatment with LY235959, suggesting that NMDA receptors are involved in the L-glu heart rate response. Local pretreatment with LY235959 associated with systemic PE or dTyr(CH(2))(5)(Me)AVP (50 mu g/kg) respectively potentiated or blocked the response to L-glu, suggesting that L-glu responses observed after LY235959 are vasopressin mediated. The increased pressor and bradycardiac responses observed after LY + PE was blocked by subsequent i.v. treatment with the V(1)-vasopressin receptor antagonist dTyr(CH(2))(5)(Me)AVP, suggesting vasopressin mediation. The pressor and bradycardiac response to L-glu microinjection into the PVN observed in animals pretreated with LY + PE was progressively inhibited and even blocked by additional pretreatment with increasing doses of NBQX (2, 10, and 20 nmol) microinjected into the PVN, suggesting its mediation by local non-NMDA receptors. In conclusion, results suggest the existence of two glutamatergic pressor pathways in the PVN: one sympathetic pathway that is mediated by NMDA receptors and a vasopressinergic pathway that is mediated by non-NMDA receptors. (C) 2009 Wiley-Liss, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study, we investigated the role played by the hypothalamic paraventricular nucleus (PVN) in the modulation of cardiac baroreflex activity in unanesthetized rats. Bilateral microinjections of the nonselective neurotransmission blocker CoCl(2) into the PVN decreased the reflex bradycardic response evoked by blood pressure increases, but had no effect on reflex tachycardia evoked by blood pressure decreases. Bilateral microinjections of the selective NMDA glutamate receptor antagonist LY235959 into the PVN caused effects that were similar to those observed after microinjections of CoCl(2), decreasing reflex bradycardia without affecting tachycardic response. The microinjection of the selective non-NMDA glutamate receptor antagonist NBQX into the PVN did not affect the baroreflex activity. Also, the microinjection of L-glutamate into the PVN increased the reflex bradycardia, an effect opposed to that observed after PVN treatment with CoCl(2) or LY235959, and this effect of L-glutamate was blocked by PVN pretreatment with LY235959. LY235959 injected into the PVN after iv. treatment with the selective beta(1)-adrenoceptor antagonist atenolol still decreased the reflex bradycardia. Taken together, our results suggest a facilitatory influence of the PVN on the bradycardic response of the baroreflex through activation of local NMDA glutamate receptors and a modulation of the cardiac parasympathetic activity. (C) 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The hypothalamus-pituitary-adrenal axis (HPA) participates in mediating the response to stressful stimuli. Within the HPA, neurons in the medial parvocellular region of paraventricular nucleus (PVN) of the hypothalamus integrate excitatory and inhibitory signals triggering secretion of corticotropin-releasing hormone (CRH), the main secretagogue of adrenocorticotropic hormone (ACTH). Stressful situations alter CRH secretion as well as other hormones, including prolactin and oxytocin. Most inputs to the PVN are of local origin, half of which are GABAergic neurons, and both GABA-A and GABA-B receptors are present in the PVN. The objective of the present study was to investigate the role of GABA-A and GABA-B receptors in the PVN`s control of stress-induced corticosterone, oxytocin and prolactin secretion. Rats Were microinjected with saline or different doses (0.5, 5 and 50 pmol) of GABA-A (bicuculine) or GABA-B (phaclofen) antagonists in the PVN. Ten minutes later, they were subjected to a stressor (ether inhalation) and blood samples were collected 30 min before and 10, 30, 60, 90 and 120 min after the stressful stimulus to measure hormone levels by radioimmunoassay. Our results indicate that GABA acts in the PVN to inhibit stress-induced corticosterone secretion via both its receptor subtypes, especially GABA-B. In contrast, GABA in the PVN stimulates oxytocin secretion through GABA-B receptors and does not alter prolactin secretion. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microinjection of the cholinergic agonist carbachol into the bed nucleus of the stria terminalis (BST) has been reported to cause pressor response in unanesthetized rats, which was shown to be mediated by an acute release of vasopressin into the systemic circulation and followed by baroreflex-mediated bradycardia. In the present study, we tested the possible involvement of the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei in the pressor response evoked by carbachol microinjection into the BST of unanesthetized rats. For this, cardiovascular responses following carbachol (1 nmol/100 nL) microinjection into the BST were studied before and after PVN or SON pretreatment, either ipsilateral or contralateral in relation to BST microinjection site, with the nonselective neurotransmission blocker cobalt chloride (CoCl(2), 1 mM/100 nL). Carbachol microinjection into the BST evoked pressor response. Moreover, BST treatment with carbachol significantly increased plasma vasopressin levels, thus confirming previous evidences that carbachol microinjection into the BST evokes pressor response due to vasopressin release into the circulation. SON pretreatment with CoCl(2), either ipsilateral or contralateral in relation to BST microinjection site, inhibited the pressor response to carbachol microinjection into the BST. However, CoCl(2) microinjection into the ipsilateral or contralateral PVN did not affect carbachol-evoked pressor response. In conclusion, our results suggest that pressor response to carbachol microinjection into the BST is mediated by SON magnocellular neurons, without significant involvement of those in the PVN. The results also indicate that responses to carbachol microinjection into the BST are mediated by a neural pathway that depends on the activation of both ipsilateral and contralateral SON. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microinjection of noradrenaline into the bed nucleus of the stria terminalis (BST) has been reported to cause a pressor response in unanesthetized rats, which was shown to be mediated by acute vasopressin release into the systemic circulation. In the present study we verified the involvement of magnocellular neurons of the hypothalamic paraventricular (PVN) or supraoptic (SON) nuclei and the local neurotransmitter involved in the pressor response to noradrenaline microinjection into the BST. The PVN pretreatment with the non-selective neurotransmission blocker CoCl(2) (1 nmol/100 nL) inhibited the noradrenaline-evoked pressor response. However, responses were not affected by SON treatment with CoCl(2). Further experiments were carried out to test if glutamatergic neurotransmission in the PVN mediates the pressor response evoked by noradrenaline microinjection into the BST. Pretreatment of the PVN with the selective N-methyl-d-aspartate (NMDA) receptor antagonist LY235959 (2 nmol/100 nL) did not affect the noradrenaline-evoked pressor response. However, PVN pretreatment with the selective non-NMDA receptor antagonist NBQX (2 nmol/100 nL) significantly reduced the pressor response to noradrenaline microinjection into the BST. In conclusion, our results suggest that pressor responses to noradrenaline microinjection into the BST are mediated by PVN magnocellular neurons without involvement of SON neurons. They also suggest that a glutamatergic neurotransmission through non-NMDA glutamate receptors in the PVN mediates the response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Prolactin (PRL) is tonically inhibited by dopamine (DA) released from neurons in the arcuate and periventricular nuclei. Kisspeptin plays a pivotal role in LH regulation. In rodents, kisspeptin neurons are found mostly in the anteroventral periventricular and arcuate nuclei, but the physiology of arcuate kisspeptin neurons is not completely understood. We investigated the role of kisspeptin in the control of hypothalamic DA and pituitary PRL secretion in adult rats. Intracerebroventricular kisspeptin-10 (Kp-10) elicited PRL release in a dose-dependent manner in estradiol (E2)-treated ovariectomized rats (OVX+E2), whereas no effect was found in oil-treated ovariectomized rats (OVX). Kp-10 increased PRL release in males and proestrous but not diestrous females. Associated with the increase in PRL release, intracerebroventricular Kp-10 reduced Fos-related antigen expression in tyrosine hydroxylase-immunoreactive (ir) neurons of arcuate and periventricular nuclei in OVX+E2 rats, with no effect in OVX rats. Kp-10 also decreased 3,4-dihydroxyphenylacetic acid concentration and 3,4-dihydroxyphenylacetic acid-DA ratio in the median eminence but not striatum in OVX+E2 rats. Double-label immunofluorescence combined with confocal microscopy revealed kisspeptin-ir fibers in close apposition to and in contact with tyrosine hydroxylase-ir perikarya in the arcuate. In addition, Kp-10 was not found to alter PRL release from anterior pituitary cell cultures regardless of E2 treatment. We provide herein evidence that kisspeptin regulates PRL release through inhibition of hypothalamic dopaminergic neurons, and that this mechanism is E2 dependent in females. These findings suggest a new role for central kisspeptin with possible implications for reproductive physiology. (Endocrinology 151: 3247-3257, 2010)