967 resultados para androgen receptor gene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alkoholberusning är en av de starkaste riskfaktorerna för aggressivt beteende. Alla individer blir dock inte aggressiva under alkoholberusning. I sin doktorsavhandling undersökte Johansson ifall individens genetiska uppsättning kan förklara skillnader i vem som reagerar på alkohol med ökat aggressivt beteende och ilska och vem som inte gör det. Resultaten visade att individer som är bärare av en viss variant av genen som kodar för oxytocinets receptorer är i högre grad benägna att uppvisa aggressivt beteende än andra när de är alkoholberusade. Sambandet mellan alkohol och ilska påverkades även av individens genetiska uppsättning av två oxytocinreceptorgenvarianter, vilket antyder att dessa genvarianter även påverkar benägenheten att känna ilska under alkoholberusning. Oxytocinet, som fungerar både som ett hormon och en neurotransmittor, har i tidigare studier visats ha breda effekter på sociala förmågor hos människan, såsom förmåga till igenkännande av andras känslouttryck. Resultaten är de första att hos människan experimentellt påvisa att vissa individer beter sig mer aggressivt än andra när de är berusade, beroende på individens genetiska uppsättning. ”Det är viktigt att komma ihåg att genens effekt i det här fallet inte är av en sådan natur att den direkt och ofrånkomligen orsakar aggressivt beteende. Med andra ord är det orimligt i detta fall att tänka att en individ skulle tillmätas ansvarsfrihet i exempelvis ett våldsbrottmål om hon bär på en viss variant av denna gen”, påpekar Johansson. Oxytocinreceptorgenens effekter analyserades i två olika urval. I ett experimentellt upplägg indelades 116 män slumpässigt i två grupper: en grupp som tilldelades alkoholhaltiga drycker, och en kontrollgrupp som tilldelades alkoholfria drycker. Aggressivt beteende mättes med ett laboratorietest där försökspersonerna fick bestraffa en fiktiv motspelare genom att spela upp motbjudande ljud för denne. Resultaten replikerades i ett populationsbaserat urval av män och kvinnor (n = 3755) vilka besvarat frågor om deras aggressiva beteenden, ilska, och alkoholanvändning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nephrogenic diabetes insipidus (NDI) is a rare disease characterized by renal inability to respond properly to arginine vasopressin due to mutations in the vasopressin type 2 receptor (V2(R)) gene in affected kindreds. In most kindreds thus far reported, the mode of inheritance follows an X chromosome-linked recessive pattern although autosomal-dominant and autosomal-recessive modes of inheritance have also been described. Studies demonstrating mutations in the V2(R) gene in affected kindreds that modify the receptor structure, resulting in a dys- or nonfunctional receptor have been described, but phenotypically indistinguishable NDI patients with a structurally normal V2(R) gene have also been reported. In the present study, we analyzed exon 3 of the V2(R) gene in 20 unrelated individuals by direct sequencing. A C®T alteration in the third position of codon 331 (AGC®AGT), which did not alter the encoded amino acid, was found in nine individuals, including two unrelated patients with NDI. Taken together, these observations emphasize the molecular heterogeneity of a phenotypically homogeneous syndrome

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractures are the feared consequences of osteoporosis and fractures of the proximal femur (FPF) are those that involve the highest morbidity and mortality. Thus far, evaluation of bone mineral density (BMD) is the best way to determine the risk of fracture. Genetic inheritance, in turn, is one of the major determinants of BMD. A correlation between different genotypes of the vitamin D receptor (VDR) and BMD has been recently reported. On this basis, we decided to determine the importance of the determination of VDR genotype in the presence of an osteoporotic FPF in a Brazilian population. We studied three groups: group I consisted of 73 elderly subjects older than 65 years (78.5 ± 7.2 years) hospitalized for nonpathological FPF; group II consisted of 50 individuals older than 65 years (72.9 ± 5.2 years) without FPF and group III consisted of 98 young normal Brazilian individuals aged 32.6 ± 6.6 years (mean ± SD). Analysis of VDR gene polymorphism by restriction fragment length polymorphism (RFLP) was performed by PCR amplification followed by BsmI digestion of DNA isolated from peripheral leukocytes. The genotype distribution in group I was 20.5% BB, 42.5% Bb and 37% bb and did not differ significantly from the values obtained for group II (16% BB, 36% Bb and 48% bb) or for group III (10.2% BB, 47.6% Bb and 41.8% bb). No differences in genotype distribution were observed between sexes or between the young and elderly groups. We conclude that determination of VDR polymorphism is of no practical use for the prediction of FPF. Other nongenetic factors probably start to affect bone mass, the risk to fall and consequently the occurrence of osteoporotic fractures with advancing age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Familial hypercholesterolemia (FH) is a metabolic disorder inherited as an autosomal dominant trait characterized by an increased plasma low-density lipoprotein (LDL) level. The disease is caused by several different mutations in the LDL receptor gene. Although early identification of individuals carrying the defective gene could be useful in reducing the risk of atherosclerosis and myocardial infarction, the techniques available for determining the number of the functional LDL receptor molecules are difficult to carry out and expensive. Polymorphisms associated with this gene may be used for unequivocal diagnosis of FH in several populations. The aim of our study was to evaluate the genotype distribution and relative allele frequencies of three polymorphisms of the LDL receptor gene, HincII1773 (exon 12), AvaII (exon 13) and PvuII (intron 15), in 50 unrelated Brazilian individuals with a diagnosis of heterozygous FH and in 130 normolipidemic controls. Genomic DNA was extracted from blood leukocytes by a modified salting-out method. The polymorphisms were detected by PCR-RFLP. The FH subjects showed a higher frequency of A+A+ (AvaII), H+H+ (HincII1773) and P1P1 (PvuII) homozygous genotypes when compared to the control group (P<0.05). In addition, FH probands presented a high frequency of A+ (0.58), H+ (0.61) and P1 (0.78) alleles when compared to normolipidemic individuals (0.45, 0.45 and 0.64, respectively). The strong association observed between these alleles and FH suggests that AvaII, HincII1773 and PvuII polymorphisms could be useful to monitor the inheritance of FH in Brazilian families.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polychlorinated dibenzo-p-dioxins (PCDDs) and related halogenated aromatic hydrocarbons (e.g., PCDFs), often called "dioxins", are ubiquitously present environmental contaminants. Some of them, notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are among the most toxic synthetic compounds known. The biological effects of dioxins are mediated via the aryl hydrocarbon receptor (AhR). Mutations in the AhR transactivation domain are linked to sensitivity to the acute lethality of TCDD. We present here a study of AhR gene polymorphism in normal and cancer human tissues affecting pre-mRNA splicing in the AhR gene-coding transactivation domain region (exon 10, intron 10, exon 11 region), previously shown to be associated with AhR dysfunction. We tested 126 pairs of normal and cancer tissue samples from liver, lung, stomach, kidney, mucous, breast, and pancreas of 49 males and 77 females (45-70 years of age). We used in vitro splicing assay, RT-PCR and sequencing methods. Our results showed that in an in vitro system it is possible to reconstitute cellular pre-mRNA splicing events. Tested cancer tissues did not contain mutations in the AhR transactivation domain region when the DNA sequences were compared with those from normal tissues. There were also no differences in AhR mRNA splice variants between normal and malignant breast tissues and no polymorphisms in the studied regions or cDNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The testicular feminized (Tfm) mouse carries a nonfunctional androgen receptor (AR) and reduced circulating testosterone levels. We used Tfm and castrated mice to determine whether testosterone modulates markers of aging in cardiomyocytes via its classic AR-dependent pathway or conversion to estradiol. Male littermates and Tfm mice were divided into 6 experimental groups. Castrated littermates (group 1) and sham-operated Tfm mice (group 2, N = 8 each) received testosterone. Sham-operated Tfm mice received testosterone in combination with the aromatase inhibitor anastrazole (group 3, N = 7). Castrated littermates (group 4) and sham-operated untreated Tfm mice (group 5) were used as controls (N = 8 and 7, respectively). An additional control group (group 6) consisted of age-matched non-castrated littermates (N = 8). Cardiomyocytes were isolated from the left ventricle, telomere length was measured by quantitative PCR and expression of p16INK4α, retinoblastoma (Rb) and p53 proteins was detected by Western blot 3 months after treatment. Compared with group 6, telomere length was short (P < 0.01) and expression of p16INK4α, Rb and p53 proteins was significantly (P < 0.05) up-regulated in groups 4 and 5. These changes were improved to nearly normal levels in groups 1 and 2 (telomere length = 0.78 ± 0.05 and 0.80 ± 0.08; p16INK4α = 0.13 ± 0.03 and 0.15 ± 0.04; Rb = 0.45 ± 0.05 and 0.39 ± 0.06; p53 = 0.16 ± 0.04 and 0.13 ± 0.03), but did not differ between these two groups. These improvements were partly inhibited in group 3 compared with group 2 (telomere length = 0.65 ± 0.08 vs 0.80 ± 0.08, P = 0.021; p16INK4α = 0.28 ± 0.05 vs 0.15 ± 0.04, P = 0.047; Rb = 0.60 ± 0.06 vs 0.39 ± 0.06, P < 0.01; p53 = 0.34 ± 0.06 vs 0.13 ± 0.03, P = 0.004). In conclusion, testosterone deficiency contributes to cardiomyocyte aging. Physiological testosterone can delay cardiomyocyte aging via an AR-independent pathway and in part by conversion to estradiol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of kappa group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female reproduction

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, the changes in the brain EPI (Epinephrine), adrenergic receptors and the receptor gene expression were investigated during pancreatic regeneration and insulin secretion. The changes in the pancreatic islet EPI and adrenergic receptors were also studied in the pancreatectomised rats. The regulatory function of EPI in association with Epidermal growth factor (EGF) and glucose were investigated in rat islet cultures. In vitro studies were carried out using antagonists for adrenergic receptor subtypes to see their involvement in the islet DNA synthesis. The mechanism by which the peripheral EPI regulate insulin secretion was also investigated by studying the nuclear binding proteins in the pancreatic islets during pancreatic regeneration and diabetes. The study reveals that EPI can regulate the pancreatic islet cell proliferation by controlling the insulin synthesis and secretion. The brain adrenergic receptor gene expression and functional correlation regulate the pancreatic adrenergic receptors. The functional balance of α and β-adrenergic receptors controls the insulin secretion and pancreatic β-cell proliferation, which will have immense clinical significance in the treatment of Diabetes mellitus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work is an attempt to understand the role of 5-HT, 5-HT1A and 5-HT2C receptors in the regulation of liver cell proliferation using in vivo and in vitro models. The work also focuses on the brain serotonergic changes associated with hapatocyte proliferation and apoptosis to delineate its regulatory function. The investigation of mechanisms involving different models of hepatocyte proliferation contributes to our knowledge about serotonergic regulation of cell growth, apoptosis and carcinogenesis of liver. The study reveals that the alteration of the 5-HT1A and 5-HT2C receptor function and gene expression in the brain stem, cerebral cortex and hypothalamus play an important role in the sympathetic regulation of cell proliferation, neoplastic transformation and apoptosis. The functional balance between 5-HT1A and 5-HT2C receptor plays an important role in regulating hepatocyte proliferation, neoplastic transformation and hepatic apoptosis. The regulatory role of 5-HT1A and 5-HT2C receptor during neoplastic transformation and apoptosis could lead to possible therapeutic intervention in the treatment of cancers and have immense clinical importance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Muscarinic M1 and M3 receptor changes in the brain stem during pancreatic regeneration were investigated. Brain stem acetylcholine esterase activity decreased at the time of regeneration . Sympathetic activity also decreased as indicated by the norepinephrine (NE) and epinephrine (EPI) content of adrenals and also in the plasma. Muscarinic Ml and M3 receptors showed reciprocal changes in the brain stem during regeneration. Muscairnic M1 receptor number decreased at time of regeneration without any change in the affinity. High affinity M3 receptors showed an increase in the number. The affinity did not show any change . The number of low affinity receptors decreased with decreased Kd at 72 hours after partial pancreatectomy. The Kd reversed to control value with a reversal of the number of receptors to near control value . Gene expression studies also showed a similar change in the mRNA level of Ml and M3 receptors . These alterations in the muscarinic receptors regulate sympathetic activity and maintain glucose level during pancreatic regeneration. Central muscarinic M1 and M3 receptor subtypes functional balance is suggested to regulate sympathetic and parasympathetic activity, which in turn control the islet cell proliferation and glucose homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is an attempt to understand the role of acetylcholine muscarinic M1 and M3 receptors during pancreatic regeneration and insulin secretion. The work focuses on the changes in the muscarinic M1 and M3 receptors in brain and pancreas during pancreatic regeneration. The effect of these receptor subtypes on insulin secretion and pancreatic P-cell proliferation were studied in vitro using rat primary pancreatic islet culture. Muscarinic Ml and M3 receptor kinetics and gene expression studies during pancreatic regeneration and insulin secretion will help to elucidate the role of acetylcholine functional regulation of pancreatic u-cell proliferation and insulin secretion.The cholinergic system through muscarinic M1 and M3 receptors play an important role in the regulation of pancreatic (3-cell proliferation and insulin secretion . Cholinergic activity as indicated by acetylcholine esterase, a marker for cholinergic system, decreased in the brain regions - hypothalamus, brain stem, corpus striatum, cerebral cortex and cerebellum during pancreatic regeneration. Pancreatic muscarinic M1 and M3 receptor activity increased during proliferation indicating that both receptors are stimulatory to (3-cell division. Acetylcholine dose dependently increase EGF induced DNA synthesis in pancreatic islets in vitro, which is inhibited by muscarinic antagonist atropine confirming the role of muscarinic receptors. Muscarinic M1 and M3 receptor antagonists also block acetycholine induced DNA synthesis suggesting the importance of these receptors in regeneration. Acetylcholine also stimulated glucose induced insulin secretion in vitro which is inhibited by muscarinic M1 and M3 receptor antagonists. The muscarinic receptors activity and their functional balance in the brain and pancreas exert a profound influence in the insulin secretion and also regeneration of pancreas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes Mellitus is a metabolic disorder associated with insulin deficiency, which not.only affects the carbohydrate metabolism but also is associated with various central and peripheral complications. Chronic hyperglycemia during diabetes mellitus is a major initiator of diabetic microvascular complications like retinopathy, neuropathy, The central nervous system (CNS) neurotransmitters play an important role in the regulation of glucose homeostasis. These neurotransmitters mediate rapid intracellular communications not only within the central nervous system but also in the peripheral tissues. They exert their function through receptors present in both neuronal and non neuronal cell surface that trigger second messenger signaling pathways. Dopamine is a neurotransmitter that has been implicated in various central neuronal degenerative disorders like Parkinson's disease and behavioral diseases like Schizophrenia. Dopamine is synthesised from tyrosine, stored in vesicles in axon terminals and released when the neuron is depolarised. Dopamine interacts with specific membrane receptors to produce its effect. Dopamine plays an important role both centrally and peripherally. The recent identification of five dopamine receptor subtypes provides a basis for understanding dopamine's central and peripheral actions . Dopamine receptors are classified into two major groups : DA D1 like and DA D2 like. Dopamine D1 like receptors consists of DA D1 and DA D5 receptors . Dopamine D2 like receptors consists of DA D2, DA D3 and DA D4 receptors. Stimulation of the DA D1 receptor gives rise to increased production of cAMP. Dopamine D2 receptors inhibit cAMP production, but activate the inositol phosphate second messenger system . Impairment of central dopamine neurotransmission causes muscle rigidity, hormonal regulation , thought disorder and cocaine addiction. Peripheral dopamine receptors mediate changes in blood flow, glomerular filtration rate, sodium excretion and catecholamine release. The dopamine D2 receptors increased in the corpus striatum and cerebral cortex but decreased in the hypothalamus and brain stem indicating their involvement in regulating insulin secretion. Dopamine D2 receptor which has a stimulatory effecton insulin secretion decreased in the pancreatic islets during diabetes. Our in vitro studies confirmed the stimulatory role of dopamine D2 receptors in stimulation of glucose induced insulin secretion. A detailed study at the molecular level on the mechanisms involved in the role of dopamine in insulin secretion, its functional modification could lead to therapeutic interventions that will have immense clinical importance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis is an attempt to understand the role of GABA, GABAA and GABAB receptors in the regulation of liver cell proliferation using in vivo and in vitro models. The work also focuses on the brain GABAergic changes associated with normal and neoplastic cell growth in liver and to delineate its regulatory function. The investigation of mechanisms involving mitogenic models without cell necrosis may contribute our knowledge about both on cell growth, carcinogenesis, liver pathology and treatment. Objectives of the present study are, to induce controlled liver cell proliferation by partial hepatectomy and lead nitrate administration and uncontrolled cell proliferation by N-nitrosodiethylamine treatment in male Wistar rats, the changes in the content of GABA, GABAA,GABAB in various rat brain regions. To study the GABAA and GABAB receptor changes in brain stem, hypothalamus, cerebellum and cerebral cortex during the active cortex during the period of active DNA synthesis in liver of different experimental groups. The changes in GABAA and GABAB receptor function of the brain stem, hypothalamus and cerebellum play an important role sympathetic regulation of cell proliferation and neoplastic growth in liver. The decrease in GABA content in brain stem, hypothalamus and cerebellum during regeneration and neoplasia in liver. The time course of brain GABAergic changes was closely correlated with that of heptic DNA synthesis. The functional significance of these changes was further explored by studying the changes in GABAA and GABAB receptors in brain.