863 resultados para amplificatore lock-in labview strumento misura segnali rumore energy gap
Resumo:
In the present work, we report the growth of wurtzite InN epilayers on GaN/Si (1 1 1) substrate by plasma-assisted molecular beam epitaxy (PAMBE). The growth parameters such as indium flux, substrate temperature and RF power affect the crystallographic and morphological properties of InN layers, which were evaluated using high resolution X-ray diffraction (HRXRD) analysis and atomic force microscopy (AFM). It is found that excess indium (In) concentrations and surface roughness were increased with increase in In flux and growth temperature. The intensity of HRXRD (0 0 0 2) peak, corresponding to c-axis orientation has been increased and full width at half maxima (FWHM) has decreased with increase in RF power. It was found that highly c-axis oriented InN epilayers can be grown at 450 degrees C growth temperature, 450 W RF power and 1.30 x 10(-7) mbar In beam equivalent pressure (BEP). The energy gap of InN layers grown by optimizing growth conditions was determined by photoluminescence and optical absorption measurement. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Experiments are carried out in a shock tunnel at a nominal Mach number of 5.75 in order to study the effect of concentrated energy deposition on the drag force experienced by a 120 blunt cone. Electrical energy was deposited along the stagnation streamline of the model using a high voltage DC discharge circuit (1.5 3.5KW) and the drag force was measured by a single component accelerometer balance. Numerical simulations were also carried complimenting the experiments. These simulations showed a substantial drag reduction (20% ~ 65%) whereas the experiments show no appreciable reduction in drag
Resumo:
Single receive antenna selection (AS) is a popular method for obtaining diversity benefits without the additional costs of multiple radio receiver chains. Since only one antenna receives at any time, the transmitter sends a pilot multiple times to enable the receiver to estimate the channel gains of its N antennas to the transmitter and select an antenna. In time-varying channels, the channel estimates of different antennas are outdated to different extents. We analyze the symbol error probability (SEP) in time-varying channels of the N-pilot and (N+1)-pilot AS training schemes. In the former, the transmitter sends one pilot for each receive antenna. In the latter, the transmitter sends one additional pilot that helps sample the channel fading process of the selected antenna twice. We present several new results about the SEP, optimal energy allocation across pilots and data, and optimal selection rule in time-varying channels for the two schemes. We show that due to the unique nature of AS, the (N+1)-pilot scheme, despite its longer training duration, is much more energy-efficient than the conventional N-pilot scheme. An extension to a practical scenario where all data symbols of a packet are received by the same antenna is also investigated.
Stacking Interactions in RNA and DNA: Roll-Slide Energy Hyperspace for Ten Unique Dinucleotide Steps
Resumo:
Understanding dinucleotide sequence directed structures of nuleic acids and their variability from experimental observation remained ineffective due to unavailability of statistically meaningful data. We have attempted to understand this from energy scan along twist, roll, and slide degrees of freedom which are mostly dependent on dinucleotide sequence using ab initio density functional theory. We have carried out stacking energy analysis in these dinucleotide parameter phase space for all ten unique dinucleotide steps in DNA and RNA using DFT-D by B97X-D/6-31G(2d,2p), which appears to satisfactorily explain conformational preferences for AU/AU step in our recent study. We show that values of roll, slide, and twist of most of the dinucleotide sequences in crystal structures fall in the low energy region. The minimum energy regions with large twist values are associated with the roll and slide values of B-DNA, whereas, smaller twist values correspond to higher stability to RNA and A-DNA like conformations. Incorporation of solvent effect by CPCM method could explain the preference shown by some sequences to occur in B-DNA or A-DNA conformations. Conformational preference of BII sub-state in B-DNA is preferentially displayed mainly by pyrimidine-purine steps and partly by purine-purine steps. The purine-pyrimidine steps show largest effect of 5-methyl group of thymine in stacking energy and the introduction of solvent reduces this effect significantly. These predicted structures and variabilities can explain the effect of sequence on DNA and RNA functionality. (c) 2014 Wiley Periodicals, Inc. Biopolymers 103: 134-147, 2015.
Resumo:
Low-energy laser-heating techniques are widely used in engineering applications such as, thinfilm deposition, surface treatment, metal forming and micro-structural pattern formation. In this paper,under the conditions of ignoring the thermo-mechanical coupling, a numerical simulation on the spatialand temporal temperature distribution in a sheet metal produced by the laser beam scanning in virtue of thefinite element method is presented. Both the three-dimensional transient temperature field and thetemperature evolution as a function of heat penetrating depth in the metal sheet are calculated. Thetemperature dependence of material properties was taken into account. It was shown that, after taking thetemperature dependence of the material absorbance effect into consideration, the temperature change ratealong the scanning direction and the temperature maximum were both increased.
Resumo:
4 p.
Resumo:
38 p.
Resumo:
We investigate the energy spectrum of fermionized bosonic atoms, which behave very much like spinless noninteracting fermions, in optical lattices by means of the perturbation expansion and the retarded Green's function method. The results show that the energy spectrum splits into two energy bands with single-occupation; the fermionized bosonic atom occupies nonvanishing energy state and left hole has a vanishing energy at any given momentum, and the system is in Mott-insulating state with a energy gap. Using the characteristic of energy spectra we obtained a criterion with which one can judge whether the Tonks-Girardeau (TG) gas is achieved or not.
Resumo:
<p>From the tunneling characteristics of a <i>tin-tin oxide-lead</i> junction, a direct measurement has been made of the energy-gap variation for a superconductor carrying a current in a compensated geometry. Throughout the region investigated several temperatures near T<sub>c</sub> and down to a reduced temperature t = 0.8 the observed <i>current</i> dependence agrees quite well with predictions based on the Ginzburg-Landau-Gorkov theory. Near T<sub>c</sub> the predicted <i>temperature</i> dependence is also well verified, though deviations are observed at lower temperatures; even for the latter, the data are internally consistent with the temperature dependence of the experimental critical current. At the lowest temperature investigated, t = 0.8, a small Josephson tunneling current allowed further a direct measurement of the electron drift velocity at low current densities. From this, a preliminary experimental value of the critical velocity, believed to be the first reported, can be inferred in the basis of Ginzburg-Landau theory. For tin at t = 0.8, we find v<sub>c</sub> = 87 m/sec. This value does not appear fully consistent with those predicted by recent theories for superconductors with short electronic mean-free-paths. </p>
Resumo:
We present a map of the transformation of energy in China as a Sankey diagram. After a review of previous work, and a statement of methodology, our main work has been the identification, evaluation, and treatment of appropriate data sources. This data is used to construct the Sankey diagram, in which flows of energy are traced from energy sources through end-use conversion devices, passive systems and final services to demand drivers. The resulting diagram provides a convenient and clear snapshot of existing energy transformations in China which can usefully be compared with a similar global analysis and which emphasises the potential for improvements in energy efficiency in 'passive systems'. More broadly, it gives a basis for examining and communicating future energy scenarios, including changes to demand, changes to the supply mix, changes in efficiency and alternative provision of existing services. 2012 Elsevier Ltd.
Resumo:
We have studied the optical and structural properties of InAs/GaAs QDs covered by InxGa1-xAs (0 less than or equal to x less than or equal to 0.3) layer using transmission electron microscopy, photoluminescence (PL) spectra and atomic force microscopy. We find that the strain reduces in the growth direction of InAs islands covered by InGaAs instead of GaAs layer. Significant redshift of PL peak energy and narrowing of PL linewidth are observed for the InAs QDs covered by 3 nm thick InGaAs layer. In addition, atomic force microscopy measurements indicate that the InGaAs islands will nucleate on top of InAs quantum dots, when 3 nm In0.3Ga0.7As overgrowth layer is deposited. This result can well explain the PL intensify degradation and linewidth increment of quantum dots with a higher In-mole-fraction InGaAs layer. The energy gap change of InAs QDs covered by InGaAs may be explained in terms of reducing strain, suppressing compositional mixing and increasing island height. (C) 2000 Elsevier Science B.V. All rights reserved.