958 resultados para allogeneic stem cell transplantation
Resumo:
Type 1 diabetes mellitus (T1DM) is the result of the autoimmune response against pancreatic insulin producing cells. This autoimmune response begins months or even years before the first presentation of signs and symptoms of hyperglycemia and at the time of clinical diagnosis near 30% of -cell mass still remains. In daily clinical practice, the main therapeutic option for T1DM is multiple subcutaneous insulin injections that are shown to promote tight glucose control and reduce much of diabetic chronic complications, especially microvascular complications. Another important aspect related to long-term complications of diabetes is that patients with initially larger -cell mass suffer less microvascular complications and less hypoglycemic events than those patients with small -cell mass. In face of this, -cell preservation is another important target in the management of type 1 diabetes and its related complications. For many years, various immunomodulatory regimens were tested aiming at blocking autoimmunity against -cell mass and at promoting -cell preservation, mainly in secondary prevention trials. In this review, we summarize some of the most important studies involving -cell preservation by immunomodulation and discuss our preliminary data on autologous nonmyeloablative hematopoietic stem cell transplantation in newly-diagnosed T1DM.
Resumo:
Individual differences in drug efficacy or toxicity can be influenced by genetic factors. We investigated whether polymorphisms of pharmacogenes that interfere with metabolism of drugs used in conditioning regimen and graft-versus-host disease (GvHD) prophylaxis could be associated with outcomes after HLA-identical hematopoietic stem cell transplantation (HSCT). Pharmacogenes and their polymorphisms were studied in 107 donors and patients with leukemia receiving HSCT. Candidate genes were: P450 cytochrome family (CYP2B6), glutathione-S-transferase family (GST), multidrug-resistance gene, methylenetetrahydrofolate reductase (MTHFR) and vitamin D receptor (VDR). The end points studied were oral mucositis (OM), hemorrhagic cystitis (HC), toxicity and venoocclusive disease of the liver (VOD), GvHD, transplantation-related mortality (TRM) and survival. Multivariate analyses, using death as a competing event, were performed adjusting for clinical factors. Among other clinical and genetic factors, polymorphisms of CYP2B6 genes that interfere with cyclophosphamide metabolism were associated with OM (recipient CYP2B6*4; P=0.0067), HC (recipient CYP2B6*2; P=0.03) and VOD (donor CYP2B6*6; P=0.03). Recipient MTHFR polymorphisms (C677T) were associated with acute GvHD (P=0.03), and recipient VDR TaqI with TRM and overall survival (P=0.006 and P=0.04, respectively). Genetic factors that interfere with drug metabolisms are associated with treatment-related toxicities, GvHD and survival after HLA-identical HSCT in patients with leukemia and should be investigated prospectively.
Resumo:
Context In 2007, the effects of the autologous nonmyeloablative hematopoietic stem cell transplantation (HSCT) in 15 patients with type 1 diabetes mellitus (DM) were reported. Most patients became insulin free with normal levels of glycated hemoglobin A(1c) (HbA(1c)) during a mean 18.8-month follow-up. To investigate if this effect was due to preservation of beta-cell mass, continued monitoring was performed of C-peptide levels after stem cell transplantation in the 15 original and 8 additional patients. Objective To determine C-peptide levels after autologous nonmyeloablative HSCT in patients with newly diagnosed type 1 DM during a longer follow-up. Design, Setting, and Participants A prospective phase 1/2 study of 23 patients with type 1 DM(aged 13-31 years) diagnosed in the previous 6 weeks by clinical findings with hyperglycemia and confirmed by measurement of serum levels of anti glutamic acid decarboxylase antibodies. Enrollment was November 2003-April 2008, with follow-up until December 2008 at the Bone Marrow Transplantation Unit of the School of Medicine of Ribeirao Preto, Ribeirao Preto, Brazil. Hematopoietic stem cells were mobilized via the 2007 protocol. Main Outcome Measures C-peptide levels measured during the mixed-meal tolerance test, before, and at different times following HSCT. Secondary end points included morbidity and mortality from transplantation, temporal changes in exogenous insulin requirements, and serum levels of HbA1c. Results During a 7- to 58-month follow-up (mean, 29.8 months; median, 30 months), 20 patients without previous ketoacidosis and not receiving corticosteroids during the preparative regimen became insulin free. Twelve patients maintained this status for a mean 31 months (range, 14-52 months) and 8 patients relapsed and resumed insulin use at low dose (0.1-0.3 IU/kg). In the continuous insulin-independent group, HbA(1c) levels were less than 7.0% and mean (SE) area under the curve (AUC) of C-peptide levels increased significantly from 225.0 (75.2) ng/mL per 2 hours pretransplantation to 785.4 (90.3) ng/mL per 2 hours at 24 months posttransplantation (P<.001) and to 728.1 (144.4) ng/mL per 2 hours at 36 months (P=.001). In the transient insulin-independent group, mean (SE) AUC of C-peptide levels also increased from 148.9 (75.2) ng/mL per 2 hours pretransplantation to 546.8 (96.9) ng/mL per 2 hours at 36 months (P=.001), which was sustained at 48 months. In this group, 2 patients regained insulin independence after treatment with sitagliptin, which was associated with increase in C-peptide levels. Two patients developed bilateral nosocomial pneumonia, 3 patients developed late endocrine dysfunction, and 9 patients developed oligospermia. There was no mortality. Conclusion After a mean follow-up of 29.8 months following autologous nonmyeloablative HSCT in patients with newly diagnosed type 1 DM, C-peptide levels increased significantly and the majority of patients achieved insulin independence with good glycemic control. Trial Registration clinicaltrials.gov Identifier: NCT00315133
Resumo:
In this review, we present (1) the scientific basis for the use of high-dose immunosuppression followed by autologous peripheral blood hematopoietic stem cell transplantation for newly diagnosed type 1 diabetes (T1D); (2) an update of the clinical and laboratory outcome of 20 patients transplanted at the University Hospital of the Ribeirao Preto Medical School, University of Sao Paulo, Brazil, and followed up to January/2008, including 4 relapses among 19 patients without previous ketoacidosis; (3) a commentary on criticisms to our article that appeared in four articles from the scientific literature; and (4) a discussion of the prospectives for cellular therapy for T1D.
Resumo:
Objective. Evidence from animal studies, case reports, and phase I studies suggests that hemopoietic stem cell transplantation (HSCT) can be effective in the treatment of rheumatoid arthritis (RA). It is unclear, however, if depletion of T cells in the stem cell product infused after high-dose chemotherapy is beneficial in prolonging responses by reducing the number of infused autoreactive T cells. This pilot multicenter, randomized trial was undertaken to obtain feasibility data on whether CD34 selection (as a form of T cell depletion) of an autologous stem cell graft is of benefit in the HSCT procedure in patients with severe, refractory RA. Methods. Thirty-three patients with severe RA who had been treated unsuccessfully with methotrexate and at least 1 other disease-modifying agent were enrolled in the trial. The patients received high-dose immunosuppressive treatment with 200 mg/kg cyclophosphamide followed by an infusion of autologous stem cells that were CD34 selected or unmanipulated. Safety, efficacy (based on American College of Rheumatology [ACR] response criteria), and time to recurrence of disease were assessed on a monthly basis for up to 12 months. Results. All patients were living at the end of the study, with no major unexpected toxicities. Overall, on an intent-to-treat basis, ACR 20% response (ACR20) was achieved in 70% of the patients. An ACR70 response was attained in 27.7% of the 18 patients who had received CD34-selected cells and 53.3% of the 15 who had received unmanipulated cells (P = 0.20). The median time to disease recurrence was 147 days in the CD34-selected cell group and 201 days in the unmanipulated cell group (P = 0.28). There was no relationship between CD4 lymphopenia and response, but 72% of rheumatoid factor (RF)-positive patients had an increase in RF titer prior to recurrence of disease. Conclusion. HSCT can be performed safely in patients with RA, and initial results indicate significant responses in patients with severe, treatment-resistant disease. Similar outcomes were observed in patients undergoing HSCT with unmanipulated cells and those receiving CD34-selected cells. Larger studies are needed to confirm these findings.
Resumo:
The purpose of this investigation was to assess changes in total energy expenditure (TEE), body weight (BW) and body composition following a peripheral blood stem cell transplant and following participation in a 3-month duration, moderate-intensity, mixed-type exercise programme. The doubly labelled and singly labelled water methods were used to measure TEE and total body water (TBW). Body weight and TBW were then used to calculate percentage body fat (%BF), and fat and fat-free mass (FFM). TEE and body composition measures were assessed pretransplant (PI), immediately post-transplant (PII) and 3 months post-PII (PIII). Following PII, 12 patients were divided equally into a control group (CG) or exercise intervention group (EG). While there was no change in TEE between pre- and post-transplant, BW (P
Resumo:
Abstract The investigation of the web of relationships between the different elements of the immune system has proven instrumental to better understand this complex biological system. This is particularly true in the case of the interactions between B and T lymphocytes, both during cellular development and at the stage of cellular effectors functions. The understanding of the B–T cells interdependency and the possibility to manipulate this relationship may be directly applicable to situations where immunity is deficient, as is the case of cancer or immune suppression after radio and chemotherapy. The work presented here started with the development of a novel and accurate tool to directly assess the diversity of the cellular repertoire (Chapter III). Contractions of T cell receptor diversity have been related with a deficient immune status. This method uses gene chips platforms where nucleic acids coding for lymphocyte receptors are hybridized and is based on the fact that the frequency of hybridization of nucleic acids to the oligonucleotides on a gene chip varies in direct proportion to diversity. Subsequently, and using this new method and other techniques of cell quantification I examined, in an animal model, the role that polyclonal B cells and immunoglobulin exert upon T cell development in the thymus, specifically on the acquisition of a broader repertoire diversity by the T cell receptors (Chapter IV and V). The hypothesis tested was if the presence of more diverse peptides in the thymus, namely polyclonal immunoglobulin, would induce the generation of more diverse T cells precursors. The results obtained demonstrated that the diversity of the T cell compartment is increased by the presence of polyclonal immunoglobulin. Polyclonal immunoglobulin, and particularly the Fab fragments of the molecule, represent the most diverse self-molecules in the body and its peptides are presented by antigen presenting cells to precursor T cells in the thymus during its development. This probably contributes significantly to the generation of receptor diversity. Furthermore, we also demonstrated that a more diverse repertoire of T lymphocytes is associated with a more effective and robust T cell immune function in vivo, as mice with a more diverse T cell receptors reject minor histocompatiblility discordant skin grafts faster than mice with a shrunken T cell receptor repertoire (Chapter V). We believe that a broader T cell receptor diversity allows a more efficient recognition and rejection of a higher range of external and internal aggressions. In this work it is demonstrated that a reduction of TCR diversity by thymectomy in wild type mice significantly increased survival of H-Y incompatible skin grafts, indicating decrease on T cell function. In addiction reconstitution of T-cell diversity in mice with a decreased T cell repertoire diversity with immunoglobulin Fab fragments, lead to a increase on TCR diversity and to a significantly decreased survival of the skin grafts (Chapter V). These results strongly suggest that increases on T cell repertoire diversity contribute to improvement of T cell function. Our results may have important implications on therapy and immune reconstitution in the context of AIDS, cancer, autoimmunity and post myeloablative treatments. Based on the previous results, we tested the clinical hypothesis that patients with haematological malignancies subjected to stem cell transplantation who recovered a robust immune system would have a better survival compared to patients who did not recover such a robust immune system. This study was undertaken by the examination of the progression and overall survival of 42 patients with mantle cell non-Hodgkin lymphoma receiving autologous hematopoietic stem cell transplantation (Chapter VI). The results obtained show that patients who recovered higher numbers of lymphocytes soon after autologous transplantation had a statistically significantly longer progression free and overall survivals. These results demonstrate the positive impact that a more robust immune system reconstitution after stem cell transplantation may have upon the survival of patients with haematological malignancies. In a similar clinical research framework, this dissertation also includes the study of the impact of recovering normal serum levels of polyclonal immunoglobulin on the survival of patients with another B cell haematological malignancy, multiple myeloma, after autologous stem cell transplantation (Chapter VII). The relapse free survival of the 110 patients with multiple myeloma analysed was associated with their ability to recover normal serum levels of the polyclonal compartment of immunoglobulin. These results suggest again the important effect of polyclonal immunoglobulin for the (re)generation of the immune competence. We also studied the impact of a robust immunity for the response to treatment with the antibody anti CD20, rituximab, in patients with non- Hodgkin’s lymphoma (NHL) (Chapter VIII). Patients with higher absolute counts of CD4+ T lymphocytes respond better (in terms of longer progression free survival) to rituximab compared to patients with lower number of CD4+ T lymphocytes. These observations highlight again the fact that a competent immune system is required for the clinical benefit of rituximab therapy in NHL patients. In conclusion, the work presented in this dissertation demonstrates, for the first time, that diverse B cells and polyclonal immunoglobulin promote T cell diversification in the thymus and improve T lymphocyte function. Also, it shows that in the setting of immune reconstitution, as after autologous stem cell transplantation for mantle cell lymphoma and in the setting of immune therapy for NHL, the absolute lymphocyte counts are an independent factor predicting progression free and overall survival. These results can have an important application in the clinical practice since the majority of the current treatments for cancer are immunosuppressive and implicate a subsequent immune recovery. Also, the effects of a number of antineoplastic treatments, including biological agents, depend on the immune system activity. In this way, studies similar to the ones presented here, where methods to improve the immune reconstitution are examined, may prove to be instrumental for a better understanding of the immune system and to guide more efficient treatment options and the design of future clinical trials. Resumo O estudo da rede de inter-relações entre os diversos elementos do sistema immune tem-se mostrado um instrumento essencial para uma melhor compreensão deste complexo sistema biológico. Tal é particularmente verdade no caso das interacções entre os linfócitos B e T, quer durante o desenvolvimento celular, quer ao nível das funções celulares efectoras. A compreensão da interdependência entre linfócitos B e T e a possibilidade de manipular esta relação pode ser directamente aplicável a situações em que a imunidade está deficiente, como é o caso das doenças neoplásicas ou da imunossupressão após radio ou quimioterapia. O trabalho apresentado nesta dissertação iniciou-se com o desenvolvimento de um novo método laboratorial para medir directamente a diversidade do reportório celular (Capítulo III). Reduções da diversidade do reportório dos receptores de células T têm sido relacionadas com um estado de imunodeficiência. O método desenvolvido utiliza “gene chips”, aos quais hibridizam os ácidos nucleicos codificantes das cadeias proteicas dos receptores linfocitários. A diversidade é calculada com base na frequência de hibridização do ácido nucleico da amostra aos oligonucleótidos presentes no “gene chip”. De seguida, e utilizando este novo método e outras técnicas de quantificação celular examinei, num modelo animal, o papel que as células policlonais B e a imunoglobulina exercem sobre o desenvolvimento linfocitário T no timo, especificamente na aquisição de um reportório diverso de receptores T (Capítulos IV e V). Testei, então, a hipótese de que a presença no timo de péptidos mais diversos, como a imunoglobulna policlonal, induzisse a génese de precursores T mais diversos. Demonstrámos que a diversidade do compartimento T é aumentado pela presença de imunoglobulina policlonal. A imunoglobulina policlonal, e particularmente os fragmentos Fab desta molécula, representam as moléculas autólogas mais diversas presentes nos organismos vertebrados. Estes péptidos são apresentados por células apresentadoras de antigénio às células precursoras T no timo, durante o desenvolvimento celular T. Tal, provavelmente, contribui para a génese da diversidade dos receptores. Também demonstrámos que a presença de um reportório mais diverso de linfócitos T se associa a um incremento da função imunológica T in vivo. Uma diversidade de receptores T mais extensa parece permitir um reconhecimento e rejeição mais eficientes de um maior número de agressores internos e externos. Demonstrámos que ratinhos com receptores de células T (RCT) com maior diversidade rejeitam transplantes cutâneos discordantes para antigénios minor de histocompatibilidade mais rapidamente do que ratinhos com um menor reportório T (Capítulo V). Por outro lado, uma redução da diversidade do RCT, causada por timectomia de ratinhos de estirpes selvagens, mostrou aumentar significativamente a sobrevivência de transplantes cutâneos incompatíveis para o antigénio H-Y (antigénio minor de histocompatibilidade), indicando uma diminuição da função linfocitária T. Além disso, a reconstituição da diversidade dos linfócitos T em ratinhos com uma diversidade de reportório T diminuída, induzida pela administração de fragmentos Fab de imunoglobulina, conduz a um aumento da diversidade dos RCT e a uma diminuição significativa da sobrevivência dos enxertos cutâneos (Capítulo V). Estes resultados sugerem que o aumento do reportório de células T contribui para uma melhoria das funções celulares T e poderão ter implicações importantes na terapêutica e reconstitutição imunológica em contexto de SIDA, neoplasias, autoimunidade e após tratamentos mieloablativos. Baseado nos resultados anteriores, decidimos testar a hipótese clínica de que doentes com neoplasias hematológicas sujeitos a transplantação de precursores hematopoiéticos e com recuperação imunológica precoce após transplante teriam uma sobrevivência mais longa do que doentes que não recuperassem tão bem a sua imunidade. Analisámos a sobrevivência global e sobrevivência sem doença de 42 doentes com linfoma não Hodgkin de células do manto sujeitos a transplante autólogo de precursores hematopoiéticos (Capítulo VI). Os resultados obtidos mostraram que os doentes que recuperaram contagens mais elevadas de linfócitos imediatamente após o transplante autólogo, apresentaram uma sobrevivência global e sem progressão mais longa do que doentes que não recuperaram contagens linfocitárias tão precocemente. Estes resultados demonstram o efeito positivo de uma reconstitutição imunológica robusta após transplante de presursores hematopoiéticos, sobre a sobrevivência de doentes com neoplasias hematológicas. Do mesmo modo, estudámos o efeito que a recuperação de níveis séricos normais de imunoglobulina policlonal tem na sobrevivência de doentes com outras neoplasias hematológicas de linfócitos B, como o mieloma múltiplo,após transplante autólogo de precursos hematopoiéticos (Capítulo VII). A sobrevivência livre de doença dos 110 doentes com mieloma múltiplo analizados está associada com a sua capacidade de recuperar níveis séricos normais do compartmento policlonal de imunoglobulina. Estes resultados pioneiros indicam a importância da imunoglobulina policlonal para a génese de competência imunológica. Também estudámos o impacto de um sistema imunitário eficiente sobre a resposta ao tratamento com o anticorpo anti CD20, ituximab, em doentes com linfoma não Hodgkin (LNH) (Capítulo VIII). Os resultados mostram que doentes com valores mais elevados de linfócitos T CD4+ respondem melhor (em termos de maior sobrevida livre de doença) ao rituximab, do que doentes com valores mais baixos. Estas observações ilustram a necessidade de um sistema imunitário competente para o benefício clínico da terapêutica com rituximab em doentes com LNH. Em conclusão, o trabalho apresentado nesta dissertação demonstra que as células B e a imunoglobulina policlonal promovem a diversidade das células T no timo e melhoram a função linfocitária T periférica. Concomitantemente, também demonstrámos que, no contexto de reconstituição imune, por exemplo, após transplante autólogo de precursores hematopoiéticos em doentes com linfomas de células do manto, o número absoluto de linfócitos é uma factor independente da sobrevivência. Os resultados demonstram, também, a importância dos valores de linfocitos T na resposta ao tratamento com rituximab no caso de doentes com LNH. O mesmo princípio se prova pelo facto de que doentes com mieloma múltiplo sujeitos a transplante autólogo de precursores hematopoiéticos que recuperam valores normais séricos de imunoglobulinas policlonais, terem melhores taxas de resposta em comparação com doentes que não recuperam valores normais de imunoglobulinas policlonais. Estes resultados podem ter importantes aplicações na prática clínica dado que a maioria dos tratamentos de doenças neoplásicas implica imunossupressão e, subsequente, recuperação imunológica. Estes estudos podem ser um instrumento fundamental para uma melhor compreensão do sistema imune e guiar uma escolha mais eficiente de opções terapêuticas bem como contribuir para a concepção de futuros estudos clínicos.
Resumo:
We report a primary response to Toxoplasma gondii following a hematopoietic stem cell transplantation in a patient with multiple myeloma. The primary response to T. gondii was supported by IgM, IgG and IgA seroconversion. The patient was promptly treated and there were no complications related to toxoplasmosis in the subsequent months.
Resumo:
Within the last few years, several reports have revealed that cell transplantation can be an effective way to replace lost neurons in the central nervous system (CNS) of patients affected with neurodegenerative diseases. Concerning the retina, the concept that newborn photoreceptors can integrate the retina and restore some visual functions was univocally demonstrated recently in the mouse eye (MacLaren et al. 2006) and remains to be achieved in human. These results pave the way to a standard approach in regenerative medicine aiming to replace lost photoreceptors. With the discovery of stem cells a great hope has appeared towards elaborating protocols to generate adequate cells to restore visual function in different retinal degeneration processes. Retinal stem cells (RSCs) are good candidates to repair the retina and are present throughout the retina development, including adulthood. However, neonatal mouse RSCs derived from the radial glia population have a different potential to proliferate and differentiate in comparison to adult RSCs. Moreover, we observed that adult mouse RSCs, depending on the culture conditions, have a marked tendency to transform, whereas neonatal RSCs show subtle chromosome abnormalities only after extensive expansion. These characteristics should help to identify the optimal cell source and culture conditions for cell transplantation studies. These results will be discussed in light of other studies using RSCs as well as embryonic stem cells. Another important factor to consider is the host environment, which plays a crucial role for cell integration and which was poorly studied in the normal and the diseased retina. Nonetheless, important results were recently generated to reconsider cell transplantation strategy. Perspectives to enhance cell integration by manipulating the environment will also be presented.
Resumo:
Introduction: We previously reported the results of a phase II study for patients with newly diagnosed primary CNS lymphoma (PCNSL) treated with autologous peripheral blood stem-cell transplantation (aPBSCT) and responseadapted whole brain radiotherapy (WBRT). The purpose of this report is to update the initial results and provide long-term data regarding overall survival, prognostic factors, and the risk of treatment-related neurotoxicity.Methods: A long-term follow-up was conducted on surviving primary central nervous system lymphoma patients having been treated according to the ,,OSHO-53 study", which was initiated by the Ostdeutsche Studiengruppe Hamatologie-Onkologie. Between August 1999 and October 2004 twentythree patients with an average age of 55 and median Karnofsky performance score of 70% were enrolled and received high-dose mthotrexate (HD-MTX) on days 1 and 10. In case of at least a partial remission (PR), high-dose busulfan/ thiotepa (HD-BuTT) followed by aPBSCT was performed. Patients without response to induction or without complete remission (CR) after HD-BuTT received WBRT. All patients (n=8), who are alive in 2011, were contacted and Mini Mental State examination (MMSE) and the EORTC QLQ-C30 were performed.Results: Eight patients are still alive with a median follow-up of 116,9 months (79 - 141, range). One of them suffered from a late relapse eight and a half years after initial diagnosis of PCNSL, another one suffers from a gall bladder carcinoma. Both patients are alive, the one with the relapse of PCNSL has finished rescue therapy and is further observed, the one with gall baldder carcinoma is still under therapy. MMSE and QlQ-C30 showed impressive results in the patients, who were not irradiated. Only one of the irradiated patients is still alive with a clear neurologic deficit but acceptable quality of life.Conclusions: Long-term follow-up of our patients, who were included in the OSHO-53 study show an overall survival of 30 percent. If WBRT can be avoided no long-term neurotoxicity has been observed and the patients benefit from excellent Quality of Life. Induction chemotherapy with two cycles of HD-MTX should be intensified to improve the unsatisfactory OAS of 30 percent.
Resumo:
Neural stem cells have been proposed as a new and promising treatment modality in various pathologies of the central nervous system, including malignant brain tumors. However, the underlying mechanism by which neural stem cells target tumor areas remains elusive. Monitoring of these cells is currently done by use of various modes of molecular imaging, such as optical imaging, magnetic resonance imaging and positron emission tomography, which is a novel technology for visualizing metabolism and signal transduction to gene expression. In this new context, the microenvironment of (malignant) brain tumors and the blood-brain barrier gains increased interest. The authors of this review give a unique overview of the current molecular-imaging techniques used in different therapeutic experimental brain tumor models in relation to neural stem cells. Such methods for molecular imaging of gene-engineered neural stem/progenitor cells are currently used to trace the location and temporal level of expression of therapeutic and endogenous genes in malignant brain tumors, closing the gap between in vitro and in vivo integrative biology of disease in neural stem cell transplantation.
Resumo:
Autologous stem cell transplantation (ASCT) has been successfully used in HIV-related lymphoma (HIV-Ly) patients on highly active antiretroviral therapy. We report the first comparative analysis between HIV-Ly and a matched cohort of HIV(-) lymphoma patients. This retrospective European Group for Blood and Marrow Transplantation study included 53 patients (66% non-Hodgkin and 34% Hodgkin lymphoma) within each cohort. Both groups were comparable except for the higher proportion of males, mixed-cellularity Hodgkin lymphoma and patients receiving granulocyte colony-stimulating factor before engraftment and a smaller proportion receiving total body irradiation-based conditioning within the HIV-Ly cohort. Incidence of relapse, overall survival, and progression-free survival were similar in both cohorts. A higher nonrelapse mortality within the first year after ASCT was observed in the HIV-Ly group (8% vs 2%), predominantly because of early bacterial infections, although this was not statistically significant and did not influence survival. Thus, within the highly active antiretroviral therapy era, HIV patients should be considered for ASCT according to the same criteria adopted for HIV(-) lymphoma patients.