992 resultados para algorithm Context


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for context-sensitive analysis of binaries that may have obfuscated procedure call and return operations is presented. Such binaries may use operators to directly manipulate stack instead of using native call and ret instructions to achieve equivalent behavior. Since definition of context-sensitivity and algorithms for context-sensitive analysis have thus far been based on the specific semantics associated to procedure call and return operations, classic interprocedural analyses cannot be used reliably for analyzing programs in which these operations cannot be discerned. A new notion of context-sensitivity is introduced that is based on the state of the stack at any instruction. While changes in 'calling'-context are associated with transfer of control, and hence can be reasoned in terms of paths in an interprocedural control flow graph (ICFG), the same is not true of changes in 'stack'-context. An abstract interpretation based framework is developed to reason about stack-contexts and to derive analogues of call-strings based methods for the context-sensitive analysis using stack-context. The method presented is used to create a context-sensitive version of Venable et al.'s algorithm for detecting obfuscated calls. Experimental results show that the context-sensitive version of the algorithm generates more precise results and is also computationally more efficient than its context-insensitive counterpart. Copyright © 2010 ACM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since Sharir and Pnueli, algorithms for context-sensitivity have been defined in terms of 'valid' paths in an interprocedural flow graph. The definition of valid paths requires atomic call and ret statements, and encapsulated procedures. Thus, the resulting algorithms are not directly applicable when behavior similar to call and ret instructions may be realized using non-atomic statements, or when procedures do not have rigid boundaries, such as with programs in low level languages like assembly or RTL. We present a framework for context-sensitive analysis that requires neither atomic call and ret instructions, nor encapsulated procedures. The framework presented decouples the transfer of control semantics and the context manipulation semantics of statements. A new definition of context-sensitivity, called stack contexts, is developed. A stack context, which is defined using trace semantics, is more general than Sharir and Pnueli's interprocedural path based calling-context. An abstract interpretation based framework is developed to reason about stack-contexts and to derive analogues of calling-context based algorithms using stack-context. The framework presented is suitable for deriving algorithms for analyzing binary programs, such as malware, that employ obfuscations with the deliberate intent of defeating automated analysis. The framework is used to create a context-sensitive version of Venable et al.'s algorithm for analyzing x86 binaries without requiring that a binary conforms to a standard compilation model for maintaining procedures, calls, and returns. Experimental results show that a context-sensitive analysis using stack-context performs just as well for programs where the use of Sharir and Pnueli's calling-context produces correct approximations. However, if those programs are transformed to use call obfuscations, a contextsensitive analysis using stack-context still provides the same, correct results and without any additional overhead. © Springer Science+Business Media, LLC 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a peer-to-peer network, the nodes interact with each other by sharing resources, services and information. Many applications have been developed using such networks, being a class of such applications are peer-to-peer databases. The peer-to-peer databases systems allow the sharing of unstructured data, being able to integrate data from several sources, without the need of large investments, because they are used existing repositories. However, the high flexibility and dynamicity of networks the network, as well as the absence of a centralized management of information, becomes complex the process of locating information among various participants in the network. In this context, this paper presents original contributions by a proposed architecture for a routing system that uses the Ant Colony algorithm to optimize the search for desired information supported by ontologies to add semantics to shared data, enabling integration among heterogeneous databases and the while seeking to reduce the message traffic on the network without causing losses in the amount of responses, confirmed by the improve of 22.5% in this amount. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last few years, crop rotation has gained attention due to its economic, environmental and social importance which explains why it can be highly beneficial for farmers. This paper presents a mathematical model for the Crop Rotation Problem (CRP) that was adapted from literature for this highly complex combinatorial problem. The CRP is devised to find a vegetable planting program that takes into account green fertilization restrictions, the set-aside period, planting restrictions for neighboring lots and for crop sequencing, demand constraints, while, at the same time, maximizing the profitability of the planted area. The main aim of this study is to develop a genetic algorithm and test it in a real context. The genetic algorithm involves a constructive heuristic to build the initial population and the operators of crossover, mutation, migration and elitism. The computational experiment was performed for a medium dimension real planting area with 16 lots, considering 29 crops of 10 different botanical families and a two-year planting rotation. Results showed that the algorithm determined feasible solutions in a reasonable computational time, thus proving its efficacy for dealing with this practical application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dental recognition is very important for forensic human identification, mainly regarding the mass disasters, which have frequently happened due to tsunamis, airplanes crashes, etc. Algorithms for automatic, precise, and robust teeth segmentation from radiograph images are crucial for dental recognition. In this work we propose the use of a graph-based algorithm to extract the teeth contours from panoramic dental radiographs that are used as dental features. In order to assess our proposal, we have carried out experiments using a database of 1126 tooth images, obtained from 40 panoramic dental radiograph images from 20 individuals. The results of the graph-based algorithm was qualitatively assessed by a human expert who reported excellent scores. For dental recognition we propose the use of the teeth shapes as biometric features, by the means of BAS (Bean Angle Statistics) and Shape Context descriptors. The BAS descriptors showed, on the same database, a better performance (EER 14%) than the Shape Context (EER 20%). © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feature selection aims to find the most important information from a given set of features. As this task can be seen as an optimization problem, the combinatorial growth of the possible solutions may be in-viable for a exhaustive search. In this paper we propose a new nature-inspired feature selection technique based on the bats behaviour, which has never been applied to this context so far. The wrapper approach combines the power of exploration of the bats together with the speed of the Optimum-Path Forest classifier to find the set of features that maximizes the accuracy in a validating set. Experiments conducted in five public datasets have demonstrated that the proposed approach can outperform some well-known swarm-based techniques. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feature selection has been actively pursued in the last years, since to find the most discriminative set of features can enhance the recognition rates and also to make feature extraction faster. In this paper, the propose a new feature selection called Binary Cuckoo Search, which is based on the behavior of cuckoo birds. The experiments were carried out in the context of theft detection in power distribution systems in two datasets obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others nature-inspired optimization techniques. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active machine learning algorithms are used when large numbers of unlabeled examples are available and getting labels for them is costly (e.g. requiring consulting a human expert). Many conventional active learning algorithms focus on refining the decision boundary, at the expense of exploring new regions that the current hypothesis misclassifies. We propose a new active learning algorithm that balances such exploration with refining of the decision boundary by dynamically adjusting the probability to explore at each step. Our experimental results demonstrate improved performance on data sets that require extensive exploration while remaining competitive on data sets that do not. Our algorithm also shows significant tolerance of noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents some different techniques designed to drive a swarm of robots in an a-priori unknown environment in order to move the group from a starting area to a final one avoiding obstacles. The presented techniques are based on two different theories used alone or in combination: Swarm Intelligence (SI) and Graph Theory. Both theories are based on the study of interactions between different entities (also called agents or units) in Multi- Agent Systems (MAS). The first one belongs to the Artificial Intelligence context and the second one to the Distributed Systems context. These theories, each one from its own point of view, exploit the emergent behaviour that comes from the interactive work of the entities, in order to achieve a common goal. The features of flexibility and adaptability of the swarm have been exploited with the aim to overcome and to minimize difficulties and problems that can affect one or more units of the group, having minimal impact to the whole group and to the common main target. Another aim of this work is to show the importance of the information shared between the units of the group, such as the communication topology, because it helps to maintain the environmental information, detected by each single agent, updated among the swarm. Swarm Intelligence has been applied to the presented technique, through the Particle Swarm Optimization algorithm (PSO), taking advantage of its features as a navigation system. The Graph Theory has been applied by exploiting Consensus and the application of the agreement protocol with the aim to maintain the units in a desired and controlled formation. This approach has been followed in order to conserve the power of PSO and to control part of its random behaviour with a distributed control algorithm like Consensus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obesity is a multifactorial trait, which comprises an independent risk factor for cardiovascular disease (CVD). The aim of the current work is to study the complex etiology beneath obesity and identify genetic variations and/or factors related to nutrition that contribute to its variability. To this end, a set of more than 2300 white subjects who participated in a nutrigenetics study was used. For each subject a total of 63 factors describing genetic variants related to CVD (24 in total), gender, and nutrition (38 in total), e.g. average daily intake in calories and cholesterol, were measured. Each subject was categorized according to body mass index (BMI) as normal (BMI ≤ 25) or overweight (BMI > 25). Two artificial neural network (ANN) based methods were designed and used towards the analysis of the available data. These corresponded to i) a multi-layer feed-forward ANN combined with a parameter decreasing method (PDM-ANN), and ii) a multi-layer feed-forward ANN trained by a hybrid method (GA-ANN) which combines genetic algorithms and the popular back-propagation training algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Successful software systems cope with complexity by organizing classes into packages. However, a particular organization may be neither straightforward nor obvious for a given developer. As a consequence, classes can be misplaced, leading to duplicated code and ripple effects with minor changes effecting multiple packages. We claim that contextual information is the key to rearchitecture a system. Exploiting contextual information, we propose a technique to detect misplaced classes by analyzing how client packages access the classes of a given provider package. We define locality as a measure of the degree to which classes reused by common clients appear in the same package. We then use locality to guide a simulated annealing algorithm to obtain optimal placements of classes in packages. The result is the identification of classes that are candidates for relocation. We apply the technique to three applications and validate the usefulness of our approach via developer interviews.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive a new class of iterative schemes for accelerating the convergence of the EM algorithm, by exploiting the connection between fixed point iterations and extrapolation methods. First, we present a general formulation of one-step iterative schemes, which are obtained by cycling with the extrapolation methods. We, then square the one-step schemes to obtain the new class of methods, which we call SQUAREM. Squaring a one-step iterative scheme is simply applying it twice within each cycle of the extrapolation method. Here we focus on the first order or rank-one extrapolation methods for two reasons, (1) simplicity, and (2) computational efficiency. In particular, we study two first order extrapolation methods, the reduced rank extrapolation (RRE1) and minimal polynomial extrapolation (MPE1). The convergence of the new schemes, both one-step and squared, is non-monotonic with respect to the residual norm. The first order one-step and SQUAREM schemes are linearly convergent, like the EM algorithm but they have a faster rate of convergence. We demonstrate, through five different examples, the effectiveness of the first order SQUAREM schemes, SqRRE1 and SqMPE1, in accelerating the EM algorithm. The SQUAREM schemes are also shown to be vastly superior to their one-step counterparts, RRE1 and MPE1, in terms of computational efficiency. The proposed extrapolation schemes can fail due to the numerical problems of stagnation and near breakdown. We have developed a new hybrid iterative scheme that combines the RRE1 and MPE1 schemes in such a manner that it overcomes both stagnation and near breakdown. The squared first order hybrid scheme, SqHyb1, emerges as the iterative scheme of choice based on our numerical experiments. It combines the fast convergence of the SqMPE1, while avoiding near breakdowns, with the stability of SqRRE1, while avoiding stagnations. The SQUAREM methods can be incorporated very easily into an existing EM algorithm. They only require the basic EM step for their implementation and do not require any other auxiliary quantities such as the complete data log likelihood, and its gradient or hessian. They are an attractive option in problems with a very large number of parameters, and in problems where the statistical model is complex, the EM algorithm is slow and each EM step is computationally demanding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivation: Array CGH technologies enable the simultaneous measurement of DNA copy number for thousands of sites on a genome. We developed the circular binary segmentation (CBS) algorithm to divide the genome into regions of equal copy number (Olshen {\it et~al}, 2004). The algorithm tests for change-points using a maximal $t$-statistic with a permutation reference distribution to obtain the corresponding $p$-value. The number of computations required for the maximal test statistic is $O(N^2),$ where $N$ is the number of markers. This makes the full permutation approach computationally prohibitive for the newer arrays that contain tens of thousands markers and highlights the need for a faster. algorithm. Results: We present a hybrid approach to obtain the $p$-value of the test statistic in linear time. We also introduce a rule for stopping early when there is strong evidence for the presence of a change. We show through simulations that the hybrid approach provides a substantial gain in speed with only a negligible loss in accuracy and that the stopping rule further increases speed. We also present the analysis of array CGH data from a breast cancer cell line to show the impact of the new approaches on the analysis of real data. Availability: An R (R Development Core Team, 2006) version of the CBS algorithm has been implemented in the ``DNAcopy'' package of the Bioconductor project (Gentleman {\it et~al}, 2004). The proposed hybrid method for the $p$-value is available in version 1.2.1 or higher and the stopping rule for declaring a change early is available in version 1.5.1 or higher.