939 resultados para air-water interface
Resumo:
La génération des fréquences somme (SFG), une technique spectroscopique spécifique aux interfaces, a été utilisée pour caractériser les changements de la structure macromoléculaire du surfactant cationique chlorure de dodécyltriméthylammonium (DTAC) à l’interface silice/eau dans une plage de pH variant entre 3 et 11. Les conditions expérimentales ont été choisies pour imiter les conditions les plus communes trouvées pendant les opérations de récupération assistée du pétrole. Particulièrement, la silice a été étudiée, car elle est un des composantes des surfaces minérales des réservoirs de grès, et l’adsorption du surfactant a été étudiée avec une force ionique pertinente pour les fluides de la fracturation hydraulique. Les spectres SFG ont présenté des pics détectables avec une amplitude croissante dans la région des étirements des groupes méthylène et méthyle lorsque le pH est diminué jusqu’à 3 ou augmenté jusqu’à 11, ce qui suggère des changements de la structure des agrégats de surfactant à l’interface silice/eau à une concentration de DTAC au-delà de la concentration micellaire critique. De plus, des changements dans l’intensité SFG ont été observés pour le spectre de l’eau quand la concentration de DTAC augmente de 0,2 à 50 mM dans les conditions acide, neutre et alcaline. À pH 3, près du point de charge zéro de la surface de silice, l’excès de charge positive en raison de l’adsorption du surfactant cationique crée un champ électrostatique qui oriente les molécules d’eau à l’interface. À pH 7 et 11, ce qui sont des valeurs au-dessus du point de charge zéro de la surface de silice, le champ électrostatique négatif à l’interface silice/eau diminue par un ordre de grandeur avec l’adsorption du surfactant comme résultat de la compensation de la charge négative à la surface par la charge positive du DTAC. Les résultats SFG ont été corrélés avec des mesures de l’angle de contact et de la tension interfaciale à pH 3, 7 et 11.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
At head of title: Since time began.
Resumo:
Poor agreement between 3H/3He ages and CFC-11 and CFC-12 ages suggests that CFCs may not be conservative tracers in the Everglades National Park. 3H/3He ages were used to calculate the expected concentration of CFC-11 and CFC-12 in groundwater from wells 2 to 73 m deep. The expected concentrations of CFCs were compared to the measured concentrations and plots of the % CFC-12 and CFC-11 remaining offered no evidence that significant CFC removal was occurring in the groundwater at depths ≥2 m, suggesting that CFC removal occurs at shallower depths. Except where CFC contamination was suspected, CFC-11, CFC-12 and CFC-113 concentrations in fresh surface water were nearly always below solubility equilibrium with the atmosphere. Measurements of CFC-11, CFC-12 and CFC-113 in pore water indicate a 50–90% decrease in concentration 5 cm below the groundwater–surface water (GW–SW) interface. In the same 5 cm interval CH4 concentrations increased by 300–1000%. This suggested that CFCs were removed at the GW–SW interface, possibly by methane-producing bacteria. CFC derived recharge ages should therefore be viewed with caution when recharging water percolates through anoxic methanogenic sediments.
Resumo:
Rhizon samplers were originally designed as micro-tensiometers for soil science to sample seepage water in the unsaturated zone. This study shows applications of Rhizons for porewater sampling from sediments in aquatic systems and presents a newly developed Rhizon in situ sampler (RISS). With the inexpensive Rhizon sampling technique, porewater profiles can be sampled with minimum disturbance of both the sediment structure and possible flow fields. Field experiments, tracer studies, and numerical modeling were combined to assess the suitability of Rhizons for porewater sampling. It is shown that the low effort and simple application makes Rhizons a powerful tool for porewater sampling and an alternative to classical methods. Our investigations show that Rhizons are well suited for sampling porewater on board a ship, in a laboratory, and also for in situ sampling. The results revealed that horizontally aligned Rhizons can sample porewater with a vertical resolution of 1 cm. Combined with an in situ benthic chamber system, the RISS allows studies of benthic fluxes and porewater profiles at the same location on the seafloor with negligible effect on the incubated sediment water interface. Results derived by porewater sampling of sediment cores from the Southern Ocean (Atlantic sector) and by in situ sampling of tidal flat sediments of the Wadden Sea (Sahlenburg/Cuxhaven, Germany) are presented.
Resumo:
The aim of this study is to quantify the mass transfer velocity using turbulence parameters from simultaneous measurements of oxygen concentration fields and velocity fields. The surface divergence model was considered in more detail, using data obtained for the lower range of beta (surface divergence). It is shown that the existing models that use the divergence concept furnish good predictions for the transfer velocity also for low values of beta, in the range of this study. Additionally, traditional conceptual models, such as the film model, the penetration-renewal model, and the large eddy model, were tested using the simultaneous information of concentration and velocity fields. It is shown that the film and the surface divergence models predicted the mass transfer velocity for all the range of the equipment Reynolds number used here. The velocity measurements showed viscosity effects close to the surface, which indicates that the surface was contaminated with some surfactant. Considering the results, this contamination can be considered slight for the mass transfer predictions. (C) 2009 American Institute of Chemical Engineers AIChE J, 56: 2005-2017; 2010
Resumo:
Properties of hybrid films can be enhanced if their molecular architecture is controlled. In this paper, poly (p-phenylene vinylene) was mixed with stearic acid in order to form stable hybrid Langmuir monolayers. Surface properties of these films were investigated with measurements of surface pressure, and also with polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). The films were transferred from the air-water interface to solid supports through the Langmuir-Blodgett technique, and the viability of the film as optical device was investigated with fluorescence spectroscopy. Comparing the fluorescent spectra for the polymer in solution, as a casting film, and as an LB film, the emission bands for LB films were narrower and appeared at lower wavelengths. The interactions between the film components and the design for the LB film may take advantage of the method to immobilize luminescent polymers in mixed ultrathin films adsorbed in solid matrices. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Food foams such as marshmallow, Chantilly and mousses have behavior and stability directly connected with their microstructure, bubble size distribution and interfacial properties. A high interfacial tension inherent to air/liquid foams interfaces affects its stability, and thus it has a direct impact on processing, storage and product handling. In this work, the interactions of egg albumin with various types of polysaccharides were investigated by drop tensiometry, interfacial rheology and foam stability. The progressive addition of egg albumin and polysaccharide in water induced a drop of the air-water surface tension which was dependent on the pH and polysaccharide type. At pH 4, that is below the isoeletric point of egg albumen (pI = 4.5) the surface tension was decreased from 70 mN/m to 42 mN/m by the presence of the protein, and from 70 mN/m to 43 mN/m, 40 mN/m and 38 mN/m by subsequent addition of xanthan, guar gum and kappa-carrageenan, respectively. At pH 7.5 the surface tension was decreased from 70 mN/m to 43 mN/m by the simultaneous presence of the protein and kappa-carrageenan. However, a higher surface tension of 48 and 50 mN/m was found when xanthan and guar gum were added, respectively, when compared with carrageenan addition. The main role on the stabilization of protein-polysaccharide stabilized interfaces was identified on the elasticity of the interface. Foam stability experiments confirmed that egg-albumin/kappa-carrageenan at pH below the protein isoeletric point are the most efficient systems to stabilize air/water interfaces. These results clearly indicate that protein-polysaccharide coacervation at the air/water interface is an efficient process to increase foam stability. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Formation of a normal (not temporary) W/O/W multiple emulsion via the one-step method as a result of the simultaneous occurrence of catastrophic and transitional phase inversion processes has been recently reported. Critical features of this process include the emulsification temperature (corresponding to the ultralow surface tension point), the use of a specific nonionic surfactant blend and the surfactant blend/oil phase ratio, and the addition of the surfactant blend to the oil phase. The purpose of this study was to investigate physicochemical properties in an effort to gain a mechanistic understanding of the formation of these emulsions. Bulk, surface, and interfacial theological properties of adsorbed nonionic surfactant (CremophorRH40 and Span80) films were investigated under conditions known to affect W/O/W emulsion formation. Bulk viscosity results demonstrated that CremophorRH40 has a higher mobility in oil compared than in water, explaining the significance of the solvent phase. In addition, the bulk viscosity profile of aqueous solutions containing CremophorRH40 indicated a phase transition at around 78 +/- 2 degrees C, which is in agreement with cubic phase formation in the Winsor III region. The similarity in the interfacial elasticity values of CremophorRH40 and Span80 indicated that canola oil has a major effect on surface activity, showing the significance of vegetable oil. The highest interfacial shear elasticity and viscosity were observed when both surfactants were added to the oil phase, indicating the importance of the microstructural arrangement. CremophorRH40/Span80 complexes tended to desorb from the solution/solution interface with increasing temperature, indicating surfactant phase formation as is theoretically predicted in the Winsor III region. Together these interfacial and bulk rheology data demonstrate that one-step W/O/W emulsions form as a result of the simultaneous occurrence of phase-transition processes in the Winsor III region and explain the critical formulation and processing parameters necessary to achieve the formation of these normal W/O/W emulsions.
Resumo:
Langmuir and Langmuir-Blodgett (LB) films of a cationic amphiphilic porphyrin mixed with n-alkanes octadecane and hexatriacontane were prepared and characterized, to examine the influence of the alkanes on film structure and stability. While the structure present in these films was controlled primarily by the porphyrin, the addition of the alkanes resulted in significant changes to both the phase behavior of the Langmuir films and the molecular arrangement of the LB films. These changes, as well as the observed chain length effects, are explained in terms of the intermolecular interactions present in the films.
Resumo:
The reconstitution of membrane proteins into liposomes is a useful tool to prepare antigenic components that induce immunity. We have investigated the influence of the dipalmitoylphosphatidylcholine (DPPC)/cholesterol molar ratio on the incorporation of a GPI-protein from Leishmania amazonensis on liposomes and Langmuir monolayers. The latter system is a well behaved and practical model, for understanding the effect of variables such as surface composition and lipid packing on protein incorporation. We have found that the DPPC/cholesterol molar ratio significantly alters the incorporation of the GPI-protein. In the absence of cholesterol, reconstitution is more difficult and proteoliposomes cannot be prepared, which we correlated with disruption of the DPPC layer. Our results provide important information that Could be employed in the development of a vaccine system for this disease or be used to produce other GPI-systems for biotechnological application. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
Surface pressure (pi)-molecular area (A) curves were used to characterize the packing of pseudo-ternary mixed Langmuir monolayers of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and L-alpha-dioleoyl phosphatidylethanolamine (DOPE). This pseudo-ternary mixture EPC/DOPE/DOTAP has been successfully employed in liposome formulations designed for DNA non-viral vectors. Pseudo-binary mixtures were also studied as a control. Miscibility behavior was inferred from pi-A curves applying the additivity rule by calculating the excess free energy of mixture (Delta G(Exc)). The interaction between the lipids was also deduced from the surface compressional modulus (C(s)(-1)). The deviation from ideality shows dependence on the lipid polar head type and monolayer composition. For lower DOPE concentrations, the forces are predominantly attractive. However, if the monolayer is DOPE rich, the DOTAP presence disturbs the PE-PE intermolecular interaction and the net interaction is then repulsive. The ternary monolayer EPC/DOPE/DOTAP presented itself in two configurations, modulated by the DOPE content, in a similar behavior to the DOPE/DOTAP monolayers. These results contribute to the understanding of the lipid interactions and packing in self-assembled systems associated with the in vitro and in vivo stability of liposomes. (C) 2010 Elsevier B.V. All rights reserved.