914 resultados para air pollution index


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background An increase in bicycle commuting participation may improve public health and traffic congestion in cities. Information on air pollution exposure (such as perception, symptoms and risk management) contributes to the responsible promotion of bicycle commuting participation. Methods To determine perceptions, symptoms and willingness for specific exposure risk management strategies of exposure to air pollution, a questionnaire-based cross-sectional investigation was conducted with adult bicycle commuters (n = 153; age = 41 ± 11 yr; 28% female). Results Frequency of acute respiratory signs and symptoms are positively-associated with in- and post-commute compared to pre-commute time periods (p < 0.05); greater positive-association is with respiratory disorder compared to healthy, and female compared to male, participants. The perception (although not signs or symptoms) of in-commute exposure to air pollution is positive-associated with the estimated level of in-commute proximity to motorised traffic. The majority of participants indicated a willingness (which varied with health status and gender) to adopt risk management strategies (with certain practical features) if shown to be appropriate and effective. Conclusions While acute signs and symptoms of air pollution exposure are indicated with bicycle commuting, and more so in susceptible individuals, there is willingness to manage exposure risk by adopting effective strategies with desirable features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Climate change may affect mortality associated with air pollutants, especially for fine particulate matter (PM2.5) and ozone (O3). Projection studies of such kind involve complicated modelling approaches with uncertainties. Objectives We conducted a systematic review of researches and methods for projecting future PM2.5-/O3-related mortality to identify the uncertainties and optimal approaches for handling uncertainty. Methods A literature search was conducted in October 2013, using the electronic databases: PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search was limited to peer-reviewed journal articles published in English from January 1980 to September 2013. Discussion Fifteen studies fulfilled the inclusion criteria. Most studies reported that an increase of climate change-induced PM2.5 and O3 may result in an increase in mortality. However, little research has been conducted in developing countries with high emissions and dense populations. Additionally, health effects induced by PM2.5 may dominate compared to those caused by O3, but projection studies of PM2.5-related mortality are fewer than those of O3-related mortality. There is a considerable variation in approaches of scenario-based projection researches, which makes it difficult to compare results. Multiple scenarios, models and downscaling methods have been used to reduce uncertainties. However, few studies have discussed what the main source of uncertainties is and which uncertainty could be most effectively reduced. Conclusions Projecting air pollution-related mortality requires a systematic consideration of assumptions and uncertainties, which will significantly aid policymakers in efforts to manage potential impacts of PM2.5 and O3 on mortality in the context of climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heavy metal pollution of sediments is a growing concern in most parts of the world, and numerous studies focussed on identifying contaminated sediments by using a range of digestion methods and pollution indices to estimate sediment contamination have been described in the literature. The current work provides a critical review of the more commonly used sediment digestion methods and identifies that weak acid digestion is more likely to provide guidance on elements that are likely to be bioavailable than other traditional methods of digestion. This work also reviews common pollution indices and identifies the Nemerow Pollution Index as the most appropriate method for establishing overall sediment quality. Consequently, a modified Pollution Index that can lead to a more reliable understanding of whole sediment quality is proposed. This modified pollution index is then tested against a number of existing studies and demonstrated to give a reliable and rapid estimate of sediment contamination and quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quantitative understanding of outdoor air quality in school environments is crucial given that air pollution levels inside classrooms are significantly influenced by outdoor pollution sources. To date, only a handful of studies have been conducted on this important topic in developing countries. The aim of this study was to quantify pollutant levels in the outdoor environment of a school in Bhutan and assess the factors driving them. Measurements were conducted for 16 weeks, spanning the wet and dry seasons, in a rural school in Bhutan. PM10, PM2.5, particle number (PN) and CO were measured daily using real-time instruments, while weekly samples for volatile organic compounds (VOCs), carbonyls and NO2 were collected using a passive sampling method. Overall mean PM10 and PM2.5 concentrations (µg/m3) were 27 and 13 for the wet, and 36 and 29 for the dry season, respectively. Only wet season data were available for PN concentrations, with a mean of 2.56 × 103 particles/cm3. Mean CO concentrations were below the detection limit of the instrumentation for the entire measurement period. Only low levels of eight VOCs were detected in both the wet and dry seasons, which presented different seasonal patterns in terms of the concentration of different compounds. The notable carbonyls were formaldehyde and hexaldehyde, with mean concentrations (µg/m3) of 2.37 and 2.41 for the wet, and 6.22 and 0.34 for the dry season, respectively. Mean NO2 cocentration for the dry season was 1.7 µg/m3, while it was below the detection limit of the instrumentation for the wet season. The pollutant concentrations were associated with a number of factors, such as cleaning and combustion activities in and around the school. A comparison with other school studies showed comparable results with a few of the studies, but in general, we found lower pollutant concentrations in the present study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Though increased particulate air pollution has been consistently associated with elevated mortality, evidence regarding whether diminished particulate air pollution would lead to mortality reduction is limited. Citywide air pollution mitigation program during the 2010 Asian Games in Guangzhou, China, provided such an opportunity. Daily mortality from non-accidental, cardiovascular and respiratory diseases was compared for 51 intervention days (November 1–December 21) in 2010 with the same calendar date of baseline years (2006–2009 and 2011). Relative risk (RR) and 95% confidence interval (95% CI) were estimated using a time series Poisson model, adjusting for day of week, public holidays, daily mean temperature and relative humidity. Daily PM10 (particle with aerodynamic diameter less than 10 μm) decreased from 88.64 μg/m3 during the baseline period to 80.61 μg/m3 during the Asian Games period. Other measured air pollutants and weather variables did not differ substantially. Daily mortality from non-accidental, cardiovascular and respiratory diseases decreased from 32, 11 and 6 during the baseline period to 25, 8 and 5 during the Games period, the corresponding RR for the Games period compared with the baseline period was 0.79 (95% CI: 0.73–0.86), 0.77 (95% CI: 0.66–0.89) and 0.68 (95% CI: 0.57–0.80), respectively. No significant decreases were observed in other months of 2010 in Guangzhou and intervention period in two control cities. This finding supports the efforts to reduce air pollution and improve public health through transportation restriction and industrial emission control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

- Objective We sought to assess the effect of long-term exposure to ambient air pollution on the prevalence of self-reported health outcomes in Australian women. - Design Cross-sectional study - Setting and participants The geocoded residential addresses of 26 991 women across 3 age cohorts in the Australian Longitudinal Study on Women's Health between 2006 and 2011 were linked to nitrogen dioxide (NO2) exposure estimates from a land-use regression model. Annual average NO2 concentrations and residential proximity to roads were used as proxies of exposure to ambient air pollution. - Outcome measures Self-reported disease presence for diabetes mellitus, heart disease, hypertension, stroke, asthma, chronic obstructive pulmonary disease and self-reported symptoms of allergies, breathing difficulties, chest pain and palpitations. - Methods Disease prevalence was modelled by population-averaged Poisson regression models estimated by generalised estimating equations. Associations between symptoms and ambient air pollution were modelled by multilevel mixed logistic regression. Spatial clustering was accounted for at the postcode level. - Results No associations were observed between any of the outcome and exposure variables considered at the 1% significance level after adjusting for known risk factors and confounders. - Conclusions Long-term exposure to ambient air pollution was not associated with self-reported disease prevalence in Australian women. The observed results may have been due to exposure and outcome misclassification, lack of power to detect weak associations or an actual absence of associations with self-reported outcomes at the relatively low annual average air pollution exposure levels across Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure assessment studies conducted in developing countries have been based on fixed-site monitoring to date. This is a major deficiency, leading to errors in estimating the actual exposures, which are a function of time spent and pollutant concentrations in different microenvironments. This study quantified school children’s daily personal exposure to ultrafine particles (UFP) using real-time monitoring, as well as volatile organic compounds (VOCs) and NO2 using passive sampling in rural Bhutan in order to determine the factors driving the exposures. An activity diary was used to track children’s time activity patterns, and difference in mean exposure levels across sex and indoor/outdoor were investigated with ANOVA. 82 children, attending three primary schools participated in this study; S1 and S2 during the wet season and S3 during the dry season. Mean daily UFP exposure (cm-3) was 1.08 × 104 for children attending S1, 9.81 × 103 for S2, and 4.19 × 104 for S3. The mean daily NO2 exposure (µg m-3) was 4.27 for S1, 3.33 for S2 and 5.38 for S3 children. Likewise, children attending S3 also experienced higher daily exposure to a majority of the VOCs than those attending S1 and S2. Time-series of UFP personal exposures provided detailed information on identifying sources of these particles and quantifying their contributions to the total daily exposures for each microenvironment. The highest UFP exposure resulted from cooking/eating, contributing to 64% of the daily exposure, due to firewood combustion in houses using traditional mud cookstoves. The lowest UFP exposures were during the hours that children spent outdoors at school. The outcomes of this study highlight the significant contributions of lifestyle and socio-economic factors in personal exposures and have applications in environmental risk assessment and household air pollution mitigation in Bhutan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human exposures in transportation microenvironments are poorly represented by ambient stationary monitoring. A number of on-road studies using vehicle-based mobile monitoring have been conducted to address this. Most previous studies were conducted on urban roads in developed countries where the primary emission source was vehicles. Few studies have examined on-road pollution in developing countries in urban settings. Currently, no study has been conducted for roadways in rural environments where a substantial proportion of the population live. This study aimed to characterize on-road air quality on the East-West Highway (EWH) in Bhutan and identify its principal sources. We conducted six mobile measurements of PM10, particle number (PN) count and CO along the entire 570 km length of the EWH. We divided the EWH into five segments, R1-R5, taking the road length between two district towns as a single road segment. The pollutant concentrations varied widely along the different road segments, with the highest concentrations for R5 compared with other road segments (PM10 = 149 µg/m3, PN = 5.74 × 104 particles/cm-3, CO = 0.19 ppm), which is the final segment of the road to the capital. Apart from vehicle emissions, the dominant sources were road works, unpaved roads and roadside combustion activities. Overall, the highest contributions above the background levels were made by unpaved roads for PM10 (6 times background), and vehicle emissions for PN and CO (5 and 15 times background, respectively). Notwithstanding the differences in instrumentation used and particle size range measured, the current study showed lower PN concentrations compared with similar on-road studies. However, concentrations were still high enough that commuters, road maintenance workers and residents living along the EWH, were potentially exposed to elevated pollutant concentrations from combustion and non-combustion sources. Future studies should focus on assessing the dispersion patterns of roadway pollutants and defining the short- and long-term health impacts of exposure in Bhutan, as well as in other developing countries with similar characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limited studies have examined the associations between air pollutants [particles with diameters of 10um or less (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2)] and fasting blood glucose (FBG). We collected data for 27,685 participants who were followed during 2006 and 2008. Generalized Estimating Equation models were used to examine the effects of air pollutants on FBG while controlling for potential confounders. We found that increased exposure to NO2, SO2 and PM10 was significantly associated with increased FBG levels in single pollutant models (p<0.001). For exposure to 4 days’ average of concentrations, a 100 µg/m3 increase in SO2, NO2, and PM10 was associated with 0.17 mmol/L (95%CI: 0.15–0.19), 0.53 mmol/L (95%CI: 0.42–0.65), and 0.11 mmol/L (95%CI: 0.07–0.15) increase in FBG, respectively. In the multi-pollutant models, the effects of SO2 were enhanced, while the effects of NO2 and PM10 were alleviated. The effects of air pollutants on FBG were stronger in female, elderly, and overweight people than in male, young and underweight people. In conclusion, the findings suggest that air pollution increases the levels of FBG. Vulnerable people should pay more attention on highly polluted days to prevent air pollution-related health issues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure to ambient air pollution is a major risk factor for global disease. Assessment of the impacts of air pollution on population health and the evaluation of trends relative to other major risk factors requires regularly updated, accurate, spatially resolved exposure estimates. We combined satellite-based estimates, chemical transport model (CTM) simulations and ground measurements from 79 different countries to produce new global estimates of annual average fine particle (PM2.5) and ozone concentrations at 0.1° × 0.1° spatial resolution for five-year intervals from 1990-2010 and the year 2013. These estimates were then applied to assess population-weighted mean concentrations for 1990 – 2013 for each of 188 countries. In 2013, 87% of the world’s population lived in areas exceeding the World Health Organization (WHO) Air Quality Guideline of 10 μg/m3 PM2.5 (annual average). Between 1990 and 2013, decreases in population-weighted mean concentrations of PM2.5 were evident in most high income countries, in contrast to increases estimated in South Asia, throughout much of Southeast Asia, and in China. Population-weighted mean concentrations of ozone increased in most countries from 1990 - 2013, with modest decreases in North America, parts of Europe, and several countries in Southeast Asia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most major cities around the world experience periods of elevated air pollution levels, which exceed international health-based air quality standards (Kumar et al., 2013). Although it is a global problem, some of the highest air pollution levels are found in rapidly expanding cities in India and China. The sources, emissions, transformations and broad effects of meteorology on air pollution are reasonably well accounted in air quality control strategies in many developed cities; however these key factors remain poorly constrained in the growing cities of countries with emerging economies. We focus here on Delhi, one of the largest global population centres, which faces particular air pollution challenges, now and in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlén equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilises direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially non-homogenous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The air we breathe is being polluted by activities such as vehicles; burning coal, oil, and other fossil fuels; and manufacturing chemicals. Air pollution can even come from smaller, everyday activities such as cooking, space heating, and degreasing and painting operations. These activities add gases and particles to the air we breathe. When these gases and particles accumulate in the air in high enough concentrations, they can harm us and our environment. The module on Air Pollution deals with the various sources of air pollution and the associated environmental and health impacts. It also discusses the appropriate measures to control/prevent the same.