935 resultados para additive Gaussian noise
Resumo:
This paper presents results on the robustness of higher-order spectral features to Gaussian, Rayleigh, and uniform distributed noise. Based on cluster plots and accuracy results for various signal to noise conditions, the higher-order spectral features are shown to be better than moment invariant features.
Resumo:
In this paper conditional hidden Markov model (HMM) filters and conditional Kalman filters (KF) are coupled together to improve demodulation of differential encoded signals in noisy fading channels. We present an indicator matrix representation for differential encoded signals and the optimal HMM filter for demodulation. The filter requires O(N3) calculations per time iteration, where N is the number of message symbols. Decision feedback equalisation is investigated via coupling the optimal HMM filter for estimating the message, conditioned on estimates of the channel parameters, and a KF for estimating the channel states, conditioned on soft information message estimates. The particular differential encoding scheme examined in this paper is differential phase shift keying. However, the techniques developed can be extended to other forms of differential modulation. The channel model we use allows for multiplicative channel distortions and additive white Gaussian noise. Simulation studies are also presented.
Resumo:
Non-stationary signal modeling is a well addressed problem in the literature. Many methods have been proposed to model non-stationary signals such as time varying linear prediction and AM-FM modeling, the later being more popular. Estimation techniques to determine the AM-FM components of narrow-band signal, such as Hilbert transform, DESA1, DESA2, auditory processing approach, ZC approach, etc., are prevalent but their robustness to noise is not clearly addressed in the literature. This is critical for most practical applications, such as in communications. We explore the robustness of different AM-FM estimators in the presence of white Gaussian noise. Also, we have proposed three new methods for IF estimation based on non-uniform samples of the signal and multi-resolution analysis. Experimental results show that ZC based methods give better results than the popular methods such as DESA in clean condition as well as noisy condition.
Resumo:
In the past few years there have been attempts to develop subspace methods for DoA (direction of arrival) estimation using a fourth?order cumulant which is known to de?emphasize Gaussian background noise. To gauge the relative performance of the cumulant MUSIC (MUltiple SIgnal Classification) (c?MUSIC) and the standard MUSIC, based on the covariance function, an extensive numerical study has been carried out, where a narrow?band signal source has been considered and Gaussian noise sources, which produce a spatially correlated background noise, have been distributed. These simulations indicate that, even though the cumulant approach is capable of de?emphasizing the Gaussian noise, both bias and variance of the DoA estimates are higher than those for MUSIC. To achieve comparable results the cumulant approach requires much larger data, three to ten times that for MUSIC, depending upon the number of sources and how close they are. This is attributed to the fact that in the estimation of the cumulant, an average of a product of four random variables is needed to make an evaluation. Therefore, compared to those in the evaluation of the covariance function, there are more cross terms which do not go to zero unless the data length is very large. It is felt that these cross terms contribute to the large bias and variance observed in c?MUSIC. However, the ability to de?emphasize Gaussian noise, white or colored, is of great significance since the standard MUSIC fails when there is colored background noise. Through simulation it is shown that c?MUSIC does yield good results, but only at the cost of more data.
Resumo:
We consider a complex, additive, white Gaussian noise channel with flat fading. We study its diversity order vs transmission rate for some known power allocation schemes. The capacity region is divided into three regions. For one power allocation scheme, the diversity order is exponential throughout the capacity region. For selective channel inversion (SCI) scheme, the diversity order is exponential in low and high rate region but polynomial in mid rate region. For fast fading case we also provide a new upper bound on block error probability and a power allocation scheme that minimizes it. The diversity order behaviour of this scheme is same as for SCI but provides lower BER than the other policies.
Resumo:
Signal acquisition under a compressed sensing scheme offers the possibility of acquisition and reconstruction of signals sparse on some basis incoherent with measurement kernel with sub-Nyquist number of measurements. In particular when the sole objective of the acquisition is the detection of the frequency of a signal rather than exact reconstruction, then an undersampling framework like CS is able to perform the task. In this paper we explore the possibility of acquisition and detection of frequency of multiple analog signals, heavily corrupted with additive white Gaussian noise. We improvise upon the MOSAICS architecture proposed by us in our previous work to include a wider class of signals having non-integral frequency components. This makes it possible to perform multiplexed compressed sensing for general frequency sparse signals.
Resumo:
We study the diversity order vs rate of an additive white Gaussian noise (AWGN) channel in the whole capacity region. We show that for discrete input as well as for continuous input, Gallager's upper bounds on error probability have exponential diversity in low and high rate region but only subexponential in the mid-rate region. For the best available lower bounds and for the practical codes one observes exponential diversity throughout the capacity region. However we also show that performance of practical codes is close to Gallager's upper bounds and the mid-rate subexponential diversity has a bearing on the performance of the practical codes. Finally we show that the upper bounds with Gaussian input provide good approximation throughout the capacity region even for finite constellation.
Resumo:
In this paper, we present novel precoding methods for multiuser Rayleigh fading multiple-input-multiple-output (MIMO) systems when channel state information (CSI) is available at the transmitter (CSIT) but not at the receiver (CSIR). Such a scenario is relevant, for example, in time-division duplex (TDD) MIMO communications, where, due to channel reciprocity, CSIT can be directly acquired by sending a training sequence from the receiver to the transmitter(s). We propose three transmit precoding schemes that convert the fading MIMO channel into a fixed-gain additive white Gaussian noise (AWGN) channel while satisfying an average power constraint. We also extend one of the precoding schemes to the multiuser Rayleigh fading multiple-access channel (MAC), broadcast channel (BC), and interference channel (IC). The proposed schemes convert the fading MIMO channel into fixed-gain parallel AWGN channels in all three cases. Hence, they achieve an infinite diversity order, which is in sharp contrast to schemes based on perfect CSIR and no CSIT, which, at best, achieve a finite diversity order. Further, we show that a polynomial diversity order is retained, even in the presence of channel estimation errors at the transmitter. Monte Carlo simulations illustrate the bit error rate (BER) performance obtainable from the proposed precoding scheme compared with existing transmit precoding schemes.
Resumo:
Speech enhancement in stationary noise is addressed using the ideal channel selection framework. In order to estimate the binary mask, we propose to classify each time-frequency (T-F) bin of the noisy signal as speech or noise using Discriminative Random Fields (DRF). The DRF function contains two terms - an enhancement function and a smoothing term. On each T-F bin, we propose to use an enhancement function based on likelihood ratio test for speech presence, while Ising model is used as smoothing function for spectro-temporal continuity in the estimated binary mask. The effect of the smoothing function over successive iterations is found to reduce musical noise as opposed to using only enhancement function. The binary mask is inferred from the noisy signal using Iterated Conditional Modes (ICM) algorithm. Sentences from NOIZEUS corpus are evaluated from 0 dB to 15 dB Signal to Noise Ratio (SNR) in 4 kinds of additive noise settings: additive white Gaussian noise, car noise, street noise and pink noise. The reconstructed speech using the proposed technique is evaluated in terms of average segmental SNR, Perceptual Evaluation of Speech Quality (PESQ) and Mean opinion Score (MOS).
Resumo:
We develop a new dictionary learning algorithm called the l(1)-K-svp, by minimizing the l(1) distortion on the data term. The proposed formulation corresponds to maximum a posteriori estimation assuming a Laplacian prior on the coefficient matrix and additive noise, and is, in general, robust to non-Gaussian noise. The l(1) distortion is minimized by employing the iteratively reweighted least-squares algorithm. The dictionary atoms and the corresponding sparse coefficients are simultaneously estimated in the dictionary update step. Experimental results show that l(1)-K-SVD results in noise-robustness, faster convergence, and higher atom recovery rate than the method of optimal directions, K-SVD, and the robust dictionary learning algorithm (RDL), in Gaussian as well as non-Gaussian noise. For a fixed value of sparsity, number of dictionary atoms, and data dimension, l(1)-K-SVD outperforms K-SVD and RDL on small training sets. We also consider the generalized l(p), 0 < p < 1, data metric to tackle heavy-tailed/impulsive noise. In an image denoising application, l(1)-K-SVD was found to result in higher peak signal-to-noise ratio (PSNR) over K-SVD for Laplacian noise. The structural similarity index increases by 0.1 for low input PSNR, which is significant and demonstrates the efficacy of the proposed method. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
H. J. Kushner has obtained the differential equation satisfied by the optimal feedback control law for a stochastic control system in which the plant dynamics and observations are perturbed by independent additive Gaussian white noise processes. However, the differentiation includes the first and second functional derivatives and, except for a restricted set of systems, is too complex to solve with present techniques.
This investigation studies the optimal control law for the open loop system and incorporates it in a sub-optimal feedback control law. This suboptimal control law's performance is at least as good as that of the optimal control function and satisfies a differential equation involving only the first functional derivative. The solution of this equation is equivalent to solving two two-point boundary valued integro-partial differential equations. An approximate solution has advantages over the conventional approximate solution of Kushner's equation.
As a result of this study, well known results of deterministic optimal control are deduced from the analysis of optimal open loop control.
Resumo:
This research is concerned with block coding for a feedback communication system in which the forward and feedback channels are independently disturbed by additive white Gaussian noise and average power constrained. Two coding schemes are proposed in which the messages to be coded for transmission over the forward channel are realized as a set of orthogonal waveforms. A finite number of forward and feedback transmissions (iterations) per message is made. Information received over the feedback channel is used to modify the waveform transmitted on successive forward iterations in such a way that the expected value of forward signal energy is zero on all iterations after the first. Similarly, information is sent over the feedback channel in such a way that the expected value of feedback signal energy is also zero on all iterations after the first. These schemes are shown to achieve a lower probability of error than the best one-way coding scheme at all rates up to the forward channel capacity, provided only that the feedback channel capacity be greater than the forward channel capacity. These schemes make more efficient use of the available feedback power than existing feedback coding schemes, and therefore require less feedback power to achieve a given error performance.
Resumo:
The problem of global optimization of M phase-incoherent signals in N complex dimensions is formulated. Then, by using the geometric approach of Landau and Slepian, conditions for optimality are established for N = 2 and the optimal signal sets are determined for M = 2, 3, 4, 6, and 12.
The method is the following: The signals are assumed to be equally probable and to have equal energy, and thus are represented by points ṡi, i = 1, 2, …, M, on the unit sphere S1 in CN. If Wik is the halfspace determined by ṡi and ṡk and containing ṡi, i.e. Wik = {ṙϵCN:| ≥ | ˂ṙ, ṡk˃|}, then the Ʀi = ∩/k≠i Wik, i = 1, 2, …, M, the maximum likelihood decision regions, partition S1. For additive complex Gaussian noise ṅ and a received signal ṙ = ṡiejϴ + ṅ, where ϴ is uniformly distributed over [0, 2π], the probability of correct decoding is PC = 1/πN ∞/ʃ/0 r2N-1e-(r2+1)U(r)dr, where U(r) = 1/M M/Ʃ/i=1 Ʀi ʃ/∩ S1 I0(2r | ˂ṡ, ṡi˃|)dσ(ṡ), and r = ǁṙǁ.
For N = 2, it is proved that U(r) ≤ ʃ/Cα I0(2r|˂ṡ, ṡi˃|)dσ(ṡ) – 2K/M. h(1/2K [Mσ(Cα)-σ(S1)]), where Cα = {ṡϵS1:|˂ṡ, ṡi˃| ≥ α}, K is the total number of boundaries of the net on S1 determined by the decision regions, and h is the strictly increasing strictly convex function of σ(Cα∩W), (where W is a halfspace not containing ṡi), given by h = ʃ/Cα∩W I0 (2r|˂ṡ, ṡi˃|)dσ(ṡ). Conditions for equality are established and these give rise to the globally optimal signal sets for M = 2, 3, 4, 6, and 12.
Resumo:
In this paper we consider a network that is trying to reach consensus over the occurrence of an event while communicating over Additive White Gaussian Noise (AWGN) channels. We characterize the impact of different link qualities and network connectivity on consensus performance by analyzing both the asymptotic and transient behaviors. More specifically, we derive a tight approximation for the second largest eigenvalue of the probability transition matrix. We furthermore characterize the dynamics of each individual node. © 2009 AACC.
Resumo:
Given n noisy observations g; of the same quantity f, it is common use to give an estimate of f by minimizing the function Eni=1(gi-f)2. From a statistical point of view this corresponds to computing the Maximum likelihood estimate, under the assumption of Gaussian noise. However, it is well known that this choice leads to results that are very sensitive to the presence of outliers in the data. For this reason it has been proposed to minimize the functions of the form Eni=1V(gi-f), where V is a function that increases less rapidly than the square. Several choices for V have been proposed and successfully used to obtain "robust" estimates. In this paper we show that, for a class of functions V, using these robust estimators corresponds to assuming that data are corrupted by Gaussian noise whose variance fluctuates according to some given probability distribution, that uniquely determines the shape of V.