985 resultados para adaptive cost


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the development and performance of a low-power sensor node (hardware, software and algorithms) that autonomously controls the sampling interval of a suite of sensors based on local state estimates and future predictions of water flow. The problem is motivated by the need to accurately reconstruct abrupt state changes in urban watersheds and stormwater systems. Presently, the detection of these events is limited by the temporal resolution of sensor data. It is often infeasible, however, to increase measurement frequency due to energy and sampling constraints. This is particularly true for real-time water quality measurements, where sampling frequency is limited by reagent availability, sensor power consumption, and, in the case of automated samplers, the number of available sample containers. These constraints pose a significant barrier to the ubiquitous and cost effective instrumentation of large hydraulic and hydrologic systems. Each of our sensor nodes is equipped with a low-power microcontroller and a wireless module to take advantage of urban cellular coverage. The node persistently updates a local, embedded model of flow conditions while IP-connectivity permits each node to continually query public weather servers for hourly precipitation forecasts. The sampling frequency is then adjusted to increase the likelihood of capturing abrupt changes in a sensor signal, such as the rise in the hydrograph – an event that is often difficult to capture through traditional sampling techniques. Our architecture forms an embedded processing chain, leveraging local computational resources to assess uncertainty by analyzing data as it is collected. A network is presently being deployed in an urban watershed in Michigan and initial results indicate that the system accurately reconstructs signals of interest while significantly reducing energy consumption and the use of sampling resources. We also expand our analysis by discussing the role of this approach for the efficient real-time measurement of stormwater systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scheme is based on Ami Harten's ideas (Harten, 1994), the main tools coming from wavelet theory, in the framework of multiresolution analysis for cell averages. But instead of evolving cell averages on the finest uniform level, we propose to evolve just the cell averages on the grid determined by the significant wavelet coefficients. Typically, there are few cells in each time step, big cells on smooth regions, and smaller ones close to irregularities of the solution. For the numerical flux, we use a simple uniform central finite difference scheme, adapted to the size of each cell. If any of the required neighboring cell averages is not present, it is interpolated from coarser scales. But we switch to ENO scheme in the finest part of the grids. To show the feasibility and efficiency of the method, it is applied to a system arising in polymer-flooding of an oil reservoir. In terms of CPU time and memory requirements, it outperforms Harten's multiresolution algorithm.The proposed method applies to systems of conservation laws in 1Dpartial derivative(t)u(x, t) + partial derivative(x)f(u(x, t)) = 0, u(x, t) is an element of R-m. (1)In the spirit of finite volume methods, we shall consider the explicit schemeupsilon(mu)(n+1) = upsilon(mu)(n) - Deltat/hmu ((f) over bar (mu) - (f) over bar (mu)-) = [Dupsilon(n)](mu), (2)where mu is a point of an irregular grid Gamma, mu(-) is the left neighbor of A in Gamma, upsilon(mu)(n) approximate to 1/mu-mu(-) integral(mu-)(mu) u(x, t(n))dx are approximated cell averages of the solution, (f) over bar (mu) = (f) over bar (mu)(upsilon(n)) are the numerical fluxes, and D is the numerical evolution operator of the scheme.According to the definition of (f) over bar (mu), several schemes of this type have been proposed and successfully applied (LeVeque, 1990). Godunov, Lax-Wendroff, and ENO are some of the popular names. Godunov scheme resolves well the shocks, but accuracy (of first order) is poor in smooth regions. Lax-Wendroff is of second order, but produces dangerous oscillations close to shocks. ENO schemes are good alternatives, with high order and without serious oscillations. But the price is high computational cost.Ami Harten proposed in (Harten, 1994) a simple strategy to save expensive ENO flux calculations. The basic tools come from multiresolution analysis for cell averages on uniform grids, and the principle is that wavelet coefficients can be used for the characterization of local smoothness.. Typically, only few wavelet coefficients are significant. At the finest level, they indicate discontinuity points, where ENO numerical fluxes are computed exactly. Elsewhere, cheaper fluxes can be safely used, or just interpolated from coarser scales. Different applications of this principle have been explored by several authors, see for example (G-Muller and Muller, 1998).Our scheme also uses Ami Harten's ideas. But instead of evolving the cell averages on the finest uniform level, we propose to evolve the cell averages on sparse grids associated with the significant wavelet coefficients. This means that the total number of cells is small, with big cells in smooth regions and smaller ones close to irregularities. This task requires improved new tools, which are described next.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An economic-statistical model is developed for variable parameters (VP) (X) over bar charts in which all design parameters vary adaptively, that is, each of the design parameters (sample size, sampling interval and control-limit width) vary as a function of the most recent process information. The cost function due to controlling the process quality through a VP (X) over bar chart is derived. During the optimization of the cost function, constraints are imposed on the expected times to signal when the process is in and out of control. In this way, required statistical properties can be assured. Through a numerical example, the proposed economic-statistical design approach for VP (X) over bar charts is compared to the economic design for VP (X) over bar charts and to the economic-statistical and economic designs for fixed parameters (FP) (X) over bar charts in terms of the operating cost and the expected times to signal. From this example, it is possible to assess the benefits provided by the proposed model. Varying some input parameters, their effect on the optimal cost and on the optimal values of the design parameters was analysed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application process of fluid fertilizers through variable rates implemented by classical techniques with feedback and conventional equipments can be inefficient or unstable. This paper proposes an open-loop control system based on artificial neural network of the type multilayer perceptron for the identification and control of the fertilizer flow rate. The network training is made by the algorithm of Levenberg-Marquardt with training data obtained from measurements. Preliminary results indicate a fast, stable and low cost control system for precision fanning. Copyright (C) 2000 IFAC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]A numerical model for the evaluation of solar radiation in different locations is presented. The solar radiation model is implemented taking into account the terrain surface using two-dimensional adaptive meshes of triangles that are constructed using a refinement/derefinement procedure in accordance with the variations of terrain surface and albedo. The selected methodology defines the terrain characteristics with a minimum number of points so that the computational cost is reduced for a given accuracy. The model can be used in atmospheric sciences as well as in other fields such as electrical engineering, since it allows the user to find the optimal location for maximum power generation in photovoltaic or solar thermal power plants...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intensity non-uniformity (bias field) correction, contextual constraints over spatial intensity distribution and non-spherical cluster's shape in the feature space are incorporated into the fuzzy c-means (FCM) for segmentation of three-dimensional multi-spectral MR images. The bias field is modeled by a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of either intensity or membership are added into the FCM cost functions. Since the feature space is not isotropic, distance measures, other than the Euclidean distance, are used to account for the shape and volumetric effects of clusters in the feature space. The performance of segmentation is improved by combining the adaptive FCM scheme with the criteria used in Gustafson-Kessel (G-K) and Gath-Geva (G-G) algorithms through the inclusion of the cluster scatter measure. The performance of this integrated approach is quantitatively evaluated on normal MR brain images using the similarity measures. The improvement in the quality of segmentation obtained with our method is also demonstrated by comparing our results with those produced by FSL (FMRIB Software Library), a software package that is commonly used for tissue classification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic systems, especially in real-life applications, are often determined by inter-/intra-variability, uncertainties and time-varying components. Physiological systems are probably the most representative example in which population variability, vital signal measurement noise and uncertain dynamics render their explicit representation and optimization a rather difficult task. Systems characterized by such challenges often require the use of adaptive algorithmic solutions able to perform an iterative structural and/or parametrical update process towards optimized behavior. Adaptive optimization presents the advantages of (i) individualization through learning of basic system characteristics, (ii) ability to follow time-varying dynamics and (iii) low computational cost. In this chapter, the use of online adaptive algorithms is investigated in two basic research areas related to diabetes management: (i) real-time glucose regulation and (ii) real-time prediction of hypo-/hyperglycemia. The applicability of these methods is illustrated through the design and development of an adaptive glucose control algorithm based on reinforcement learning and optimal control and an adaptive, personalized early-warning system for the recognition and alarm generation against hypo- and hyperglycemic events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the ongoing shift in the computer graphics industry toward Monte Carlo rendering, there is a need for effective, practical noise-reduction techniques that are applicable to a wide range of rendering effects and easily integrated into existing production pipelines. This course surveys recent advances in image-space adaptive sampling and reconstruction algorithms for noise reduction, which have proven very effective at reducing the computational cost of Monte Carlo techniques in practice. These approaches leverage advanced image-filtering techniques with statistical methods for error estimation. They are attractive because they can be integrated easily into conventional Monte Carlo rendering frameworks, they are applicable to most rendering effects, and their computational overhead is modest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Noise maps are usually represented as contour or isolines maps describing the sound levels in a region. Using this kind of representation the user can easily find the noise level assigned to every location in the map. But the acoustic calculations behind the map are not performed for every single location on it; they are only performed in a grid of receivers. The results in this calculation grid are interpolated to draw the isolines or contours. Therefore, the resolution of the calculation grid and the way it was created (rectangular, triangulated, random…) have an effect on the resulting map. In this paper we describe a smart iterative procedure to optimize the quality of the map at a really low additional computational cost, using self-adaptive grids for the acoustic calculations. These self-adaptive grids add new receivers to the sampling grid in those locations where they are expected to be more useful, so that the performance at the output of the interpolator is enhanced. Self-adaptive sampling grids can be used for minimizing the overall error of the map (improving its quality), or for reducing calculation times, and can be also applied selectively to target areas or contour lines. This can be done by the user customizing the maximum number of iterations, the number of new receivers for each iteration, the target isolines, the target quality…

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we propose a method to accelerate time dependent numerical solvers of systems of PDEs that require a high cost in computational time and memory. The method is based on the combined use of such numerical solver with a proper orthogonal decomposition, from which we identify modes, a Galerkin projection (that provides a reduced system of equations) and the integration of the reduced system, studying the evolution of the modal amplitudes. We integrate the reduced model until our a priori error estimator indicates that our approximation in not accurate. At this point we use again our original numerical code in a short time interval to adapt the POD manifold and continue then with the integration of the reduced model. Application will be made to two model problems: the Ginzburg-Landau equation in transient chaos conditions and the two-dimensional pulsating cavity problem, which describes the motion of liquid in a box whose upper wall is moving back and forth in a quasi-periodic fashion. Finally, we will discuss a way of improving the performance of the method using experimental data or information from numerical simulations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In just a few years cloud computing has become a very popular paradigm and a business success story, with storage being one of the key features. To achieve high data availability, cloud storage services rely on replication. In this context, one major challenge is data consistency. In contrast to traditional approaches that are mostly based on strong consistency, many cloud storage services opt for weaker consistency models in order to achieve better availability and performance. This comes at the cost of a high probability of stale data being read, as the replicas involved in the reads may not always have the most recent write. In this paper, we propose a novel approach, named Harmony, which adaptively tunes the consistency level at run-time according to the application requirements. The key idea behind Harmony is an intelligent estimation model of stale reads, allowing to elastically scale up or down the number of replicas involved in read operations to maintain a low (possibly zero) tolerable fraction of stale reads. As a result, Harmony can meet the desired consistency of the applications while achieving good performance. We have implemented Harmony and performed extensive evaluations with the Cassandra cloud storage on Grid?5000 testbed and on Amazon EC2. The results show that Harmony can achieve good performance without exceeding the tolerated number of stale reads. For instance, in contrast to the static eventual consistency used in Cassandra, Harmony reduces the stale data being read by almost 80% while adding only minimal latency. Meanwhile, it improves the throughput of the system by 45% while maintaining the desired consistency requirements of the applications when compared to the strong consistency model in Cassandra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HELLO protocol or neighborhood discovery is essential in wireless ad hoc networks. It makes the rules for nodes to claim their existence/aliveness. In the presence of node mobility, no fix optimal HELLO frequency and optimal transmission range exist to maintain accurate neighborhood tables while reducing the energy consumption and bandwidth occupation. Thus a Turnover based Frequency and transmission Power Adaptation algorithm (TFPA) is presented in this paper. The method enables nodes in mobile networks to dynamically adjust both their HELLO frequency and transmission range depending on the relative speed. In TFPA, each node monitors its neighborhood table to count new neighbors and calculate the turnover ratio. The relationship between relative speed and turnover ratio is formulated and optimal transmission range is derived according to battery consumption model to minimize the overall transmission energy. By taking advantage of the theoretical analysis, the HELLO frequency is adapted dynamically in conjunction with the transmission range to maintain accurate neighborhood table and to allow important energy savings. The algorithm is simulated and compared to other state-of-the-art algorithms. The experimental results demonstrate that the TFPA algorithm obtains high neighborhood accuracy with low HELLO frequency (at least 11% average reduction) and with the lowest energy consumption. Besides, the TFPA algorithm does not require any additional GPS-like device to estimate the relative speed for each node, hence the hardware cost is reduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El propósito de esta tesis es la implementación de métodos eficientes de adaptación de mallas basados en ecuaciones adjuntas en el marco de discretizaciones de volúmenes finitos para mallas no estructuradas. La metodología basada en ecuaciones adjuntas optimiza la malla refinándola adecuadamente con el objetivo de mejorar la precisión de cálculo de un funcional de salida dado. El funcional suele ser una magnitud escalar de interés ingenieril obtenida por post-proceso de la solución, como por ejemplo, la resistencia o la sustentación aerodinámica. Usualmente, el método de adaptación adjunta está basado en una estimación a posteriori del error del funcional de salida mediante un promediado del residuo numérico con las variables adjuntas, “Dual Weighted Residual method” (DWR). Estas variables se obtienen de la solución del problema adjunto para el funcional seleccionado. El procedimiento habitual para introducir este método en códigos basados en discretizaciones de volúmenes finitos involucra la utilización de una malla auxiliar embebida obtenida por refinamiento uniforme de la malla inicial. El uso de esta malla implica un aumento significativo de los recursos computacionales (por ejemplo, en casos 3D el aumento de memoria requerida respecto a la que necesita el problema fluido inicial puede llegar a ser de un orden de magnitud). En esta tesis se propone un método alternativo basado en reformular la estimación del error del funcional en una malla auxiliar más basta y utilizar una técnica de estimación del error de truncación, denominada _ -estimation, para estimar los residuos que intervienen en el método DWR. Utilizando esta estimación del error se diseña un algoritmo de adaptación de mallas que conserva los ingredientes básicos de la adaptación adjunta estándar pero con un coste computacional asociado sensiblemente menor. La metodología de adaptación adjunta estándar y la propuesta en la tesis han sido introducidas en un código de volúmenes finitos utilizado habitualmente en la industria aeronáutica Europea. Se ha investigado la influencia de distintos parámetros numéricos que intervienen en el algoritmo. Finalmente, el método propuesto se compara con otras metodologías de adaptación de mallas y su eficiencia computacional se demuestra en una serie de casos representativos de interés aeronáutico. ABSTRACT The purpose of this thesis is the implementation of efficient grid adaptation methods based on the adjoint equations within the framework of finite volume methods (FVM) for unstructured grid solvers. The adjoint-based methodology aims at adapting grids to improve the accuracy of a functional output of interest, as for example, the aerodynamic drag or lift. The adjoint methodology is based on the a posteriori functional error estimation using the adjoint/dual-weighted residual method (DWR). In this method the error in a functional output can be directly related to local residual errors of the primal solution through the adjoint variables. These variables are obtained by solving the corresponding adjoint problem for the chosen functional. The common approach to introduce the DWR method within the FVM framework involves the use of an auxiliary embedded grid. The storage of this mesh demands high computational resources, i.e. over one order of magnitude increase in memory relative to the initial problem for 3D cases. In this thesis, an alternative methodology for adapting the grid is proposed. Specifically, the DWR approach for error estimation is re-formulated on a coarser mesh level using the _ -estimation method to approximate the truncation error. Then, an output-based adaptive algorithm is designed in such way that the basic ingredients of the standard adjoint method are retained but the computational cost is significantly reduced. The standard and the new proposed adjoint-based adaptive methodologies have been incorporated into a flow solver commonly used in the EU aeronautical industry. The influence of different numerical settings has been investigated. The proposed method has been compared against different grid adaptation approaches and the computational efficiency of the new method has been demonstrated on some representative aeronautical test cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increase in CPU power and screen quality of todays smartphones as well as the availability of high bandwidth wireless networks has enabled high quality mobile videoconfer- encing never seen before. However, adapting to the variety of devices and network conditions that come as a result is still not a trivial issue. In this paper, we present a multiple participant videoconferencing service that adapts to different kind of devices and access networks while providing an stable communication. By combining network quality detection and the use of a multipoint control unit for video mixing and transcoding, desktop, tablet and mobile clients can participate seamlessly. We also describe the cost in terms of bandwidth and CPU usage of this approach in a variety of scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The postprocessing or secret-key distillation process in quantum key distribution (QKD) mainly involves two well-known procedures: information reconciliation and privacy amplification. Information or key reconciliation has been customarily studied in terms of efficiency. During this, some information needs to be disclosed for reconciling discrepancies in the exchanged keys. The leakage of information is lower bounded by a theoretical limit, and is usually parameterized by the reconciliation efficiency (or inefficiency), i.e. the ratio of additional information disclosed over the Shannon limit. Most techniques for reconciling errors in QKD try to optimize this parameter. For instance, the well-known Cascade (probably the most widely used procedure for reconciling errors in QKD) was recently shown to have an average efficiency of 1.05 at the cost of a high interactivity (number of exchanged messages). Modern coding techniques, such as rate-adaptive low-density parity-check (LDPC) codes were also shown to achieve similar efficiency values exchanging only one message, or even better values with few interactivity and shorter block-length codes.