933 resultados para acute promyelocytic leukemia
Resumo:
In recent reports, adolescents and young adults (AYA) with acute lymphoblastic leukemia (ALL) have had a better outcome with pediatric treatment than with adult protocols. ALL can be classified into biologic subgroups according to immunophenotype and cytogenetics, with different clinical characteristics and outcome. The proportions of the subgroups are different in children and adults. ALL subtypes in AYA patients are less well characterized. In this study, the treatment and outcome of ALL in AYA patients aged 10-25 years in Finland on pediatric and adult protocols was retrospectively analyzed. In total, 245 patients were included. The proportions of biologic subgroups in different age groups were determined. Patients with initially normal or failed karyotype were examined with oligonucleotide microarray-based comparative genomic hybridization (aCGH). Also deletions and instability of chromosome 9p were screened in ALL patients. In addition, patients with other hematologic malignancies were screened for 9p instability. aCGH data were also used to determine a gene set that classifies AYA patients at diagnosis according to their risk of relapse. Receiver operating characteristic analysis was used to assess the value of the set of genes as prognostic classifiers. The 5-year event-free survival of AYA patients treated with pediatric or adult protocols was 67% and 60% (p=0.30), respectively. White blood cell count larger than 100x109/l was associated with poor prognosis. Patients treated with pediatric protocols and assigned to an intermediate-risk group fared significantly better than those of the pediatric high-risk or adult treatment groups. Deletions of 9p were detected in 46% of AYA ALL patients. The chromosomal region 9p21.3 was always affected, and the CDKN2A gene was always deleted. In about 15% of AYA patients, the 9p21.3 deletion was smaller than 200 kb in size, and therefore, probably undetectable with conventional methods. Deletion of 9p was the most common aberration of AYA ALL patients with initially normal karyotype. Instability of 9p, defined as multiple separate areas of copy number loss or homozygous loss within a larger heterozygous area in 9p, was detected in 19% (n=27) of ALL patients. This abnormality was restricted to ALL; none of the patients with other hematologic malignancies had the aberration. The prognostic model identification procedure resulted in a model of four genes: BAK1, CDKN2B, GSTM1, and MT1F. The copy number profile combinations of these genes differentiated between AYA ALL patients at diagnosis depending on their risk of relapse. Deletions of CDKN2B and BAK1 in combination with amplification of GSTM1 and MT1F were associated with a higher probability of relapse. Unlike all previous studies, we found that the outcome of AYA patients with ALL treated using pediatric or adult therapeutic protocols was comparable. The success of adult ALL therapy emphasizes the benefit of referral of patients to academic centers and adherence to research protocols. 9p deletions and instability are common features of ALL and may act together with oncogene-activating translocations in leukemogenesis. New and more sensitive methods of molecular cytogenetics can reveal previously cryptic genetic aberrations with an important role in leukemic development and prognosis and that may be potential targets of therapy. aCGH also provides a viable approach for model design aiming at evaluation of risk of relapse in ALL.
Resumo:
Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in folate metabolism and is involved in DNA synthesis, DNA repair and DNA methylation. Genetic polymorphisms of this enzyme have been shown to impact several diseases, including cancer. Leukemias are malignancies arising from rapidly proliferating hematopoietic cells having great requirement of DNA synthesis. This case-control study was undertaken to analyze the association of the MTHFR gene polymorphisms 677 C"T and 1298 A"C and the risk of acute lymphoblastic leukemia in children. Materials and Methods: Eighty-six patients aged below 15 years with a confirmed diagnosis of acute lymphoblastic leukemia (ALL) and 99 matched controls were taken for this study. Analysis of the polymorphisms was done using the polymerase chain reaction -restriction fragment length polymorphism (PCR-RFLP) method. Results: Frequency of MTHFR 677 CC and CT were 85.9% and 14.1% in the controls, and 84.9% and 15.1% in the cases. The 'T' allele frequency was 7% and 7.5% in cases and controls respectively. The frequency of MTHFR 1298 AA, AC, and CC were 28.3%, 55.6% and 16.1% for controls and 23.3%, 59.3% and 17.4% for cases respectively. The 'C' allele frequency for 1298 A→C was 43.9% and 47% respectively for controls and cases. The odds ratio (OR) for C677T was 1.08 (95% CI 0.48- 2.45, p = 0.851) and OR for A1298C was 1.29(95% CI 0.65-2.29, p = 0.46) and OR for 1298 CC was 1.31 (95% CI 0.53-3.26, p =0.56). The OR for the combined heterozygous status (677 CT and 1298 AC) was 1.94 (95% CI 0.58 -6.52, p = 0.286). Conclusion: The prevalence of 'T' allele for 677 MTHFR polymorphism was low in the population studied. There was no association between MTHFR 677 C→T and 1298 A→C gene polymorphisms and risk of ALL, which may be due to the small sample size.
Nitric oxide is the key mediator of death induced by fisetin in human acute monocytic leukemia cells
Resumo:
Nitric oxide ( NO) has been shown to be effective in cancer chemoprevention and therefore drugs that help generate NO would be preferable for combination chemotherapy or solo use. This study shows a new evidence of NO as a mediator of acute leukemia cell death induced by fisetin, a promising chemotherapeutic agent. Fisetin was able to kill THP-1 cells in vivo resulting in tumor shrinkage in the mouse xenograft model. Death induction in vitro was mediated by an increase in NO resulting in double strand DNA breaks and the activation of both the extrinsic and the intrinsic apoptotic pathways. Double strand DNA breaks could be reduced if NO inhibitor was present during fisetin treatment. Fisetin also inhibited the downstream components of the mTORC1 pathway through downregulation of levels of p70 S6 kinase and inducing hypo-phosphorylation of S6 Ri P kinase, eIF4B and eEF2K. NO inhibition restored phosphorylation of downstream effectors of mTORC1 and rescued cells from death. Fisetin induced Ca2+ entry through L-type Ca2+ channels and abrogation of Ca2+ influx reduced caspase activation and cell death. NO increase and increased Ca2+ were independent phenomenon. It was inferred that apoptotic death of acute monocytic leukemia cells was induced by fisetin through increased generation of NO and elevated Ca2+ entry activating the caspase dependent apoptotic pathways. Therefore, manipulation of NO production could be viewed as a potential strategy to increase efficacy of chemotherapy in acute monocytic leukemia.
Resumo:
La Leucemia Linfoblástica Aguda (LLA) es el cáncer pediátrico más común. Es un desorden de las células linfoblásticas, que son las precursoras de las células linfáticas, y se caracteriza por la acumulación en médula ósea y sangre de pequeñas células blásticas con poco citoplasma y cromatina dispersa. En las últimas décadas, se ha conseguido aumentar la supervivencia del 10% al 80% pero todavía hay un 20% de pacientes que no responden al tratamiento. Esta mejoría se ha conseguido mediante la implantación de terapias combinadas y la adecuación de la terapia a grupos de riesgo. Los pacientes se separan en tres grupos de riesgo, Riesgo Estándar (RE), Alto Riesgo (AR) y Muy Alto Riesgo (MAR), en base a marcadores pronósticos, entre los que se incluyen alteraciones citogenéticas. Sin embargo, a lo largo del tratamiento, nos encontramos con dos problemas:1) Por un lado, algunos de los pacientes incluidos en el grupo de RE y AR no responden bien al tratamiento y pasan AR y MAR respectivamente. Esto quiere decir que los grupos de riesgo no están bien definidos. Por lo tanto, sería de interés poder caracterizar los pacientes que realmente son RE y AR y aquéllos que desde un principio deberían haber sido considerados como de mayor riesgo.2) Por otro lado, un alto porcentaje de pacientes experimenta toxicidad, que puede llegar a ser muy grave en algunos casos, siendo necesario parar el tratamiento. Por este motivo, sería altamente beneficioso poder reconocer a los pacientes que van a ser más sensibles al tratamiento para, de ese modo, poder ajustar la dosis.Por todo esto, creemos que una mejor asignación de los pacientes de LLA a grupos de riesgo y la personalización de la dosis, mediante nuevos marcadores genéticos, permitiría mejorar la respuesta al tratamiento.En este estudio nos planteamos, por lo tanto, dos objetivos: 1) Llevar a cabo la identificación de nuevas alteraciones genéticas presentes en el tumor para una mejor caracterización del riesgo y 2) Realizar una caracterización genética del individuo que permita predecir la respuesta al tratamiento.
Resumo:
Despite the clinical success of acute lymphoblastic leukemia (ALL) therapy, toxicity is frequent. Therefore, it would be useful to identify predictors of adverse effects. In the last years, several studies have investigated the relationship between genetic variation and treatment-related toxicity. However, most of these studies are focused in coding regions. Nowadays, it is known that regions that do not codify proteins, such as microRNAs (miRNAs), may have an important regulatory function. MiRNAs can regulate the expression of genes affecting drug response. In fact, the expression of some of those miRNAs has been associated with drug response. Genetic variations affecting miRNAs can modify their function, which may lead to drug sensitivity. The aim of this study was to detect new toxicity markers in pediatric B-ALL, studying miRNA-related polymorphisms, which can affect miRNA levels and function. We analyzed 118 SNPs in pre-miRNAs and miRNA processing genes in association with toxicity in 152 pediatric B-ALL patients all treated with the same protocol (LAL/SHOP). Among the results found, we detected for the first time an association between rs639174 in DROSHA and vomits that remained statistically significant after FDR correction. DROSHA had been associated with alterations in miRNAs expression, which could affect genes involved in drug transport. This suggests that miRNA-related SNPs could be a useful tool for toxicity prediction in pediatric B-ALL.
Resumo:
A microchip electrophoresis method coupled with laser-induced fluorescence (LIF) detection was established for simultaneous determination of two kinds of intracellular signaling molecules (reactive oxygen species, ROS, and reduced glutathione, GSH) related to apoptosis and oxidative stress. As the probe dihydrorhodamine-123 (DHR123) can be converted intracellularly by ROS to the fluorescent rhodamine-123 (Rh123), and the probe naphthalene-2,3-dicarboxaldehyde (NDA) can react quickly with GSH to produce a fluorescent adduct, rapid determination of Rh-123 and GSH was achieved on a glass microchip within 27 s using a 20 mm borate buffer (pH 9.2). The established method was tested to measure the intracellular ROS and GSH levels in acute promyelocytic leukemia (APL)-derived NB4 cells. An elevation of intracellular ROS and depletion of GSH were observed in apoptotic N134 cells induced by arsenic trioxide (AS(2)O(3)) at low concentration (1-2 mu m). Buthionine sulfoximine (BSO), in combination with AS(2)O(3) enhanced the decrease of reduced GSH to a great extent. The combined treatment of AS(2)O(3) and hydrogen peroxide (H2O2) led to an inverse relationship between the concentrations of ROS and GSH obtained, showing the proposed method can readily evaluate the generation of ROS, which occurs simultaneously with the consumption of the inherent antioxidant.
Resumo:
BACKGROUND:
Aurora kinases play an essential role in the orchestration of chromosome separation and cytokinesis during mitosis. Small-molecule inhibition of the aurora kinases has been shown to result in inhibition of cell division, phosphorylation of histone H3 and the induction of apoptosis in a number of cell systems. These characteristics have led aurora kinase inhibitors to be considered as potential therapeutic agents.
DESIGN AND METHODS:
Aurora kinase gene expression profiles were assessed in 101 samples from patients with acute myeloid leukemia. Subsequently, aurora kinase inhibitors were investigated for their in vitro effects on cell viability, histone H3 phosphorylation, cell cycle and morphology in acute myeloid leukemia cell lines and primary acute myeloid leukemia samples.
RESULTS:
The aurora kinase inhibitors AZD1152-HQPA and ZM447439 induced growth arrest and the accumulation of hyperploid cells in acute myeloid leukemia cell lines and primary acute myeloid leukemia cultures. Furthermore, both agents inhibited histone H3 phosphorylation and this preceded perturbations in cell cycle and the induction of apoptosis. Single cell cloning assays were performed on diploid and polyploid cells to investigate their colony-forming capacities. Although the polyploid cells showed a reduced capacity for colony formation when compared with their diploid counterparts, they were consistently able to form colonies.
CONCLUSIONS:
AZD1152-HQPA- and ZM447439 are effective apoptosis-inducing agents in acute myeloid leukemia cell lines and primary acute myeloid leukemia cultures. However, their propensity to induce polyploidy does not inevitably result in apoptosis.
Resumo:
PURPOSE:
Treatment options for older patients with acute myeloid leukemia (AML) who are not considered suitable for intensive chemotherapy are limited. We assessed the second-generation purine nucleoside analog, clofarabine, in two similar phase II studies in this group of patients.
PATIENTS AND METHODS:
Two consecutive studies, UWCM-001 and BIOV-121, recruited untreated older patients with AML to receive up to four or six 5-day courses of clofarabine. Patients in UWCM-001 were either older than 70 years or 60 to 69 years of age with poor performance status (WHO > 2) or with cardiac comorbidity. Patients in BIOV-121 were >or= 65 years of age and deemed unsuitable for intensive chemotherapy.
RESULTS:
A total of 106 patients were treated in the two monotherapy studies. Median age was 71 years (range, 60 to 84 years), 30% had adverse-risk cytogenetics, and 36% had a WHO performance score >or= 2. Forty-eight percent had a complete response (32% complete remission, 16% complete remission with incomplete peripheral blood count recovery), and 18% died within 30 days. Interestingly, response and overall survival were not inferior in the adverse cytogenetic risk group. The safety profile of clofarabine in these elderly patients with AML who were unsuitable for intensive chemotherapy was manageable and typical of a cytotoxic agent in patients with acute leukemia. Patients had similar prognostic characteristics to matched patients treated with low-dose cytarabine in the United Kingdom AML14 trial, but had significantly superior response and overall survival.
CONCLUSION:
Clofarabine is active and generally well tolerated in this patient group. It is worthy of further evaluation in comparative trials and might be of particular use in patients with adverse cytogenetics.
Resumo:
Around 80% of acute myeloid leukemia (AML) patients achieve a complete remission, however many will relapse and ultimately die of their disease. The association between karyotype and prognosis has been studied extensively and identified patient cohorts as having favourable [e.g. t(8; 21), inv (16)/t(16; 16), t(15; 17)], intermediate [e.g. cytogenetically normal (NK-AML)] or adverse risk [e.g. complex karyotypes]. Previous studies have shown that gene expression profiling signatures can classify the sub-types of AML, although few reports have shown a similar feature by using methylation markers. The global methylation patterns in 19 diagnostic AML samples were investigated using the Methylated CpG Island Amplification Microarray (MCAM) method and CpG island microarrays containing 12,000 CpG sites. The first analysis, comparing favourable and intermediate cytogenetic risk groups, revealed significantly differentially methylated CpG sites (594 CpG islands) between the two subgroups. Mutations in the NPM1 gene occur at a high frequency (40%) within the NK-AML subgroup and are associated with a more favourable prognosis in these patients. A second analysis comparing the NPM1 mutant and wild-type research study subjects again identified distinct methylation profiles between these two subgroups. Network and pathway analysis revealed possible molecular mechanisms associated with the different risk and/or mutation sub-groups. This may result in a better classification of the risk groups, improved monitoring targets, or the identification of novel molecular therapies.