411 resultados para accelerometry-based physical activity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Physical activity and sedentary behaviour in youth have been reported to vary by sex, age, weight status and country. However, supporting data are often self-reported and/or do not encompass a wide range of ages or geographical locations. This study aimed to describe objectively-measured physical activity and sedentary time patterns in youth. METHODS: The International Children's Accelerometry Database (ICAD) consists of ActiGraph accelerometer data from 20 studies in ten countries, processed using common data reduction procedures. Analyses were conducted on 27,637 participants (2.8-18.4 years) who provided at least three days of valid accelerometer data. Linear regression was used to examine associations between age, sex, weight status, country and physical activity outcomes. RESULTS: Boys were less sedentary and more active than girls at all ages. After 5 years of age there was an average cross-sectional decrease of 4.2 % in total physical activity with each additional year of age, due mainly to lower levels of light-intensity physical activity and greater time spent sedentary. Physical activity did not differ by weight status in the youngest children, but from age seven onwards, overweight/obese participants were less active than their normal weight counterparts. Physical activity varied between samples from different countries, with a 15-20 % difference between the highest and lowest countries at age 9-10 and a 26-28 % difference at age 12-13. CONCLUSIONS: Physical activity differed between samples from different countries, but the associations between demographic characteristics and physical activity were consistently observed. Further research is needed to explore environmental and sociocultural explanations for these differences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Individuals with disabiliiies are increasingly accessing post secondary education opportunities to further develop their educational and career goals. This study examines the current facilitative practices of Canadian university activity-based physical education degree programs on the participation of individuals with disabilities. A critical orientation and descriptive/interpretative approach allows insight into unique stories and experiences of physical education practitioners and special needs professionals as they attempt to provide equitable educational experiences within a least restrictive environment. Leading practitioners are used to triangulate and strengthen the validity of the data while providing direction and advocacy for future development and inclusion of individuals with disabilities. The study concludes with seven recommendations, each providing university activity-based physical education degree programs with viable opportunities for helping create equitable opportunities for individuals with disabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The school has been identified as a key setting to promote physical activity. The purpose of this study was to evaluate the effect of a classroom-based activity break on in-school step counts of primary school children. Data for 90 children (49 boys, 41 girls, 9.3 ± 1.4 years) from three Irish primary schools is presented. In each school one class was randomly assigned as the intervention group and another as controls. Children's step counts were measured for five consecutive days during school hours at baseline and follow-up. Teachers of the intervention classes led a 10 min activity break in the classroom each day (Bizzy Break!). Mean daily in-school steps for the intervention at baseline and follow-up were 5351 and 5054. Corresponding values for the control group were 5469 and 4246. There was a significant difference in the change in daily steps from baseline to follow-up between groups (p < .05). There was no evidence that girls and boys responded differently to the intervention (p > .05). Children participating in a daily 10 min classroom-based activity break undertake more physical activity during school hours than controls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The high prevalence of physical inactivity worldwide calls for innovative and more effective ways to promote physical activity (PA). There are limited objective data on the effectiveness of Web-based personalized feedback on increasing PA in adults. Objective: It is hypothesized that providing personalized advice based on PA measured objectively alongside diet, phenotype, or genotype information would lead to larger and more sustained changes in PA, compared with nonpersonalized advice. Methods: A total of 1607 adults in seven European countries were randomized to either a control group (nonpersonalized advice, Level 0, L0) or to one of three personalized groups receiving personalized advice via the Internet based on current PA plus diet (Level 1, L1), PA plus diet and phenotype (Level 2, L2), or PA plus diet, phenotype, and genotype (Level 3, L3). PA was measured for 6 months using triaxial accelerometers, and self-reported using the Baecke questionnaire. Outcomes were objective and self-reported PA after 3 and 6 months. Results: While 1270 participants (85.81% of 1480 actual starters) completed the 6-month trial, 1233 (83.31%) self-reported PA at both baseline and month 6, but only 730 (49.32%) had sufficient objective PA data at both time points. For the total cohort after 6 months, a greater improvement in self-reported total PA (P=.02) and PA during leisure (nonsport) (P=.03) was observed in personalized groups compared with the control group. For individuals advised to increase PA, we also observed greater improvements in those two self-reported indices (P=.006 and P=.008, respectively) with increased personalization of the advice (L2 and L3 vs L1). However, there were no significant differences in accelerometer results between personalized and control groups, and no significant effect of adding phenotypic or genotypic information to the tailored feedback at month 3 or 6. After 6 months, there were small but significant improvements in the objectively measured physical activity level (P<.05), moderate PA (P<.01), and sedentary time (P<.001) for individuals advised to increase PA, but these changes were similar across all groups. Conclusions: Different levels of personalization produced similar small changes in objective PA. We found no evidence that personalized advice is more effective than conventional “one size fits all” guidelines to promote changes in PA in our Web-based intervention when PA was measured objectively. Based on self-reports, PA increased to a greater extent with more personalized advice. Thus, it is crucial to measure PA objectively in any PA intervention study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: There is evidence that physical activity (PA) can attenuate the influence of the fat mass- and obesity-associated (FTO) genotype on the risk to develop obesity. However, whether providing personalized information on FTO genotype leads to changes in PA is unknown. Objective: The purpose of this study was to determine if disclosing FTO risk had an impact on change in PA following a 6-month intervention. Methods: The single nucleotide polymorphism (SNP) rs9939609 in the FTO gene was genotyped in 1279 participants of the Food4Me study, a four-arm, Web-based randomized controlled trial (RCT) in 7 European countries on the effects of personalized advice on nutrition and PA. PA was measured objectively using a TracmorD accelerometer and was self-reported using the Baecke questionnaire at baseline and 6 months. Differences in baseline PA variables between risk (AA and AT genotypes) and nonrisk (TT genotype) carriers were tested using multiple linear regression. Impact of FTO risk disclosure on PA change at 6 months was assessed among participants with inadequate PA, by including an interaction term in the model: disclosure (yes/no) × FTO risk (yes/no). Results: At baseline, data on PA were available for 874 and 405 participants with the risk and nonrisk FTO genotypes, respectively. There were no significant differences in objectively measured or self-reported baseline PA between risk and nonrisk carriers. A total of 807 (72.05%) of the participants out of 1120 in the personalized groups were encouraged to increase PA at baseline. Knowledge of FTO risk had no impact on PA in either risk or nonrisk carriers after the 6-month intervention. Attrition was higher in nonrisk participants for whom genotype was disclosed (P=.01) compared with their at-risk counterparts. Conclusions: No association between baseline PA and FTO risk genotype was observed. There was no added benefit of disclosing FTO risk on changes in PA in this personalized intervention. Further RCT studies are warranted to confirm whether disclosure of nonrisk genetic test results has adverse effects on engagement in behavior change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Health care literature supports the development of accessible interventions that integrate behavioral economics, wearable devices, principles of evidence-based behavior change, and community support. However, there are limited real-world examples of large scale, population-based, member-driven reward platforms. Subsequently, a paucity of outcome data exists and health economic effects remain largely theoretical. To complicate matters, an emerging area of research is defining the role of Superusers, the small percentage of unusually engaged digital health participants who may influence other members. Objective: The objective of this preliminary study is to analyze descriptive data from GOODcoins, a self-guided, free-to-consumer engagement and rewards platform incentivizing walking, running and cycling. Registered members accessed the GOODcoins platform through PCs, tablets or mobile devices, and had the opportunity to sync wearables to track activity. Following registration, members were encouraged to join gamified group challenges and compare their progress with that of others. As members met challenge targets, they were rewarded with GOODcoins, which could be redeemed for planet- or people-friendly products. Methods: Outcome data were obtained from the GOODcoins custom SQL database. The reporting period was December 1, 2014 to May 1, 2015. Descriptive self-report data were analyzed using MySQL and MS Excel. Results: The study period includes data from 1298 users who were connected to an exercise tracking device. Females consisted of 52.6% (n=683) of the study population, 33.7% (n=438) were between the ages of 20-29, and 24.8% (n=322) were between the ages of 30-39. 77.5% (n=1006) of connected and active members met daily-recommended physical activity guidelines of 30 minutes, with a total daily average activity of 107 minutes (95% CI 90, 124). Of all connected and active users, 96.1% (n=1248) listed walking as their primary activity. For members who exchanged GOODcoins, the mean balance was 4,000 (95% CI 3850, 4150) at time of redemption, and 50.4% (n=61) of exchanges were for fitness or outdoor products, while 4.1% (n=5) were for food-related items. Participants were most likely to complete challenges when rewards were between 201-300 GOODcoins. Conclusions: The purpose of this study is to form a baseline for future research. Overall, results indicate that challenges and incentives may be effective for connected and active members, and may play a role in achieving daily-recommended activity guidelines. Registrants were typically younger, walking was the primary activity, and rewards were mainly exchanged for fitness or outdoor products. Remaining to be determined is whether members were already physically active at time of registration and are representative of healthy adherers, or were previously inactive and were incentivized to change their behavior. As challenges are gamified, there is an opportunity to investigate the role of superusers and healthy adherers, impacts on behavioral norms, and how cooperative games and incentives can be leveraged across stratified populations. Study limitations and future research agendas are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the impact of physical activity (PA) on surrogate markers of cardiovascular health in adolescents. 52 healthy students (28 females, mean age 14.5 ± 0.7 years) were investigated. Microvascular endothelial function was assessed by peripheral arterial tonometry to determine reactive hyperemic index (RHI). Vagal activity was measured using 24 h analysis of heart rate variability [root mean square of successive normal-to-normal intervals (rMSSD)]. Exercise testing was performed to determine peak oxygen uptake ([Formula: see text]) and maximum power output. PA was assessed by accelerometry. Linear regression models were performed and adjusted for age, sex, skinfolds, and pubertal status. The cohort was dichotomized into two equally sized activity groups (low vs. high) based on the daily time spent in moderate-to-vigorous PA (MVPA, 3,000-5,200 counts(.)min(-1), model 1) and vigorous PA (VPA, >5,200 counts(.)min(-1), model 2). MVPA was an independent predictor for rMSSD (β = 0.448, P = 0.010), and VPA was associated with maximum power output (β = 0.248, P = 0.016). In model 1, the high MVPA group exhibited a higher vagal tone (rMSSD 49.2 ± 13.6 vs. 38.1 ± 11.7 ms, P = 0.006) and a lower systolic blood pressure (107.3 ± 9.9 vs. 112.9 ± 8.1 mmHg, P = 0.046). In model 2, the high VPA group had higher maximum power output values (3.9 ± 0.5 vs. 3.4 ± 0.5 W kg(-1), P = 0.012). In both models, no significant differences were observed for RHI and [Formula: see text]. In conclusion, in healthy adolescents, PA was associated with beneficial intensity-dependent effects on vagal tone, systolic blood pressure, and exercise capacity, but not on microvascular endothelial function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La diabetes comprende un conjunto de enfermedades metabólicas que se caracterizan por concentraciones de glucosa en sangre anormalmente altas. En el caso de la diabetes tipo 1 (T1D, por sus siglas en inglés), esta situación es debida a una ausencia total de secreción endógena de insulina, lo que impide a la mayoría de tejidos usar la glucosa. En tales circunstancias, se hace necesario el suministro exógeno de insulina para preservar la vida del paciente; no obstante, siempre con la precaución de evitar caídas agudas de la glucemia por debajo de los niveles recomendados de seguridad. Además de la administración de insulina, las ingestas y la actividad física son factores fundamentales que influyen en la homeostasis de la glucosa. En consecuencia, una gestión apropiada de la T1D debería incorporar estos dos fenómenos fisiológicos, en base a una identificación y un modelado apropiado de los mismos y de sus sorrespondientes efectos en el balance glucosa-insulina. En particular, los sistemas de páncreas artificial –ideados para llevar a cabo un control automático de los niveles de glucemia del paciente– podrían beneficiarse de la integración de esta clase de información. La primera parte de esta tesis doctoral cubre la caracterización del efecto agudo de la actividad física en los perfiles de glucosa. Con este objetivo se ha llevado a cabo una revisión sistemática de la literatura y meta-análisis que determinen las respuestas ante varias modalidades de ejercicio para pacientes con T1D, abordando esta caracterización mediante unas magnitudes que cuantifican las tasas de cambio en la glucemia a lo largo del tiempo. Por otro lado, una identificación fiable de los periodos con actividad física es un requisito imprescindible para poder proveer de esa información a los sistemas de páncreas artificial en condiciones libres y ambulatorias. Por esta razón, la segunda parte de esta tesis está enfocada a la propuesta y evaluación de un sistema automático diseñado para reconocer periodos de actividad física, clasificando su nivel de intensidad (ligera, moderada o vigorosa); así como, en el caso de periodos vigorosos, identificando también la modalidad de ejercicio (aeróbica, mixta o de fuerza). En este sentido, ambos aspectos tienen una influencia específica en el mecanismo metabólico que suministra la energía para llevar a cabo el ejercicio y, por tanto, en las respuestas glucémicas en T1D. En este trabajo se aplican varias combinaciones de técnicas de aprendizaje máquina y reconocimiento de patrones sobre la fusión multimodal de señales de acelerometría y ritmo cardíaco, las cuales describen tanto aspectos mecánicos del movimiento como la respuesta fisiológica del sistema cardiovascular ante el ejercicio. Después del reconocimiento de patrones se incorpora también un módulo de filtrado temporal para sacar partido a la considerable coherencia temporal presente en los datos, una redundancia que se origina en el hecho de que en la práctica, las tendencias en cuanto a actividad física suelen mantenerse estables a lo largo de cierto tiempo, sin fluctuaciones rápidas y repetitivas. El tercer bloque de esta tesis doctoral aborda el tema de las ingestas en el ámbito de la T1D. En concreto, se propone una serie de modelos compartimentales y se evalúan éstos en función de su capacidad para describir matemáticamente el efecto remoto de las concetraciones plasmáticas de insulina exógena sobre las tasas de eleiminación de la glucosa atribuible a la ingesta; un aspecto hasta ahora no incorporado en los principales modelos de paciente para T1D existentes en la literatura. Los datos aquí utilizados se obtuvieron gracias a un experimento realizado por el Institute of Metabolic Science (Universidad de Cambridge, Reino Unido) con 16 pacientes jóvenes. En el experimento, de tipo ‘clamp’ con objetivo variable, se replicaron los perfiles individuales de glucosa, según lo observado durante una visita preliminar tras la ingesta de una cena con o bien alta carga glucémica, o bien baja. Los seis modelos mecanísticos evaluados constaban de: a) submodelos de doble compartimento para las masas de trazadores de glucosa, b) un submodelo de único compartimento para reflejar el efecto remoto de la insulina, c) dos tipos de activación de este mismo efecto remoto (bien lineal, bien con un punto de corte), y d) diversas condiciones iniciales. ABSTRACT Diabetes encompasses a series of metabolic diseases characterized by abnormally high blood glucose concentrations. In the case of type 1 diabetes (T1D), this situation is caused by a total absence of endogenous insulin secretion, which impedes the use of glucose by most tissues. In these circumstances, exogenous insulin supplies are necessary to maintain patient’s life; although caution is always needed to avoid acute decays in glycaemia below safe levels. In addition to insulin administrations, meal intakes and physical activity are fundamental factors influencing glucose homoeostasis. Consequently, a successful management of T1D should incorporate these two physiological phenomena, based on an appropriate identification and modelling of these events and their corresponding effect on the glucose-insulin balance. In particular, artificial pancreas systems –designed to perform an automated control of patient’s glycaemia levels– may benefit from the integration of this type of information. The first part of this PhD thesis covers the characterization of the acute effect of physical activity on glucose profiles. With this aim, a systematic review of literature and metaanalyses are conduced to determine responses to various exercise modalities in patients with T1D, assessed via rates-of-change magnitudes to quantify temporal variations in glycaemia. On the other hand, a reliable identification of physical activity periods is an essential prerequisite to feed artificial pancreas systems with information concerning exercise in ambulatory, free-living conditions. For this reason, the second part of this thesis focuses on the proposal and evaluation of an automatic system devised to recognize physical activity, classifying its intensity level (light, moderate or vigorous) and for vigorous periods, identifying also its exercise modality (aerobic, mixed or resistance); since both aspects have a distinctive influence on the predominant metabolic pathway involved in fuelling exercise, and therefore, in the glycaemic responses in T1D. Various combinations of machine learning and pattern recognition techniques are applied on the fusion of multi-modal signal sources, namely: accelerometry and heart rate measurements, which describe both mechanical aspects of movement and the physiological response of the cardiovascular system to exercise. An additional temporal filtering module is incorporated after recognition in order to exploit the considerable temporal coherence (i.e. redundancy) present in data, which stems from the fact that in practice, physical activity trends are often maintained stable along time, instead of fluctuating rapid and repeatedly. The third block of this PhD thesis addresses meal intakes in the context of T1D. In particular, a number of compartmental models are proposed and compared in terms of their ability to describe mathematically the remote effect of exogenous plasma insulin concentrations on the disposal rates of meal-attributable glucose, an aspect which had not yet been incorporated to the prevailing T1D patient models in literature. Data were acquired in an experiment conduced at the Institute of Metabolic Science (University of Cambridge, UK) on 16 young patients. A variable-target glucose clamp replicated their individual glucose profiles, observed during a preliminary visit after ingesting either a high glycaemic-load or a low glycaemic-load evening meal. The six mechanistic models under evaluation here comprised: a) two-compartmental submodels for glucose tracer masses, b) a single-compartmental submodel for insulin’s remote effect, c) two types of activations for this remote effect (either linear or with a ‘cut-off’ point), and d) diverse forms of initial conditions.