935 resultados para abiotic reactions
Resumo:
Palladium (Pd)-catalyzed cross-coupling reactions are among the most important methods in organic synthesis. We report the discovery of highly efficient and green photocatalytic processes by which cross-coupling reactions, including Sonogashira, Stille, Hiyama, Ullmann, and Buchwald–Hartwig reactions, can be driven with visible light at temperatures slightly above room temperature using alloy nanoparticles of gold and Pd on zirconium oxide, thus achieving high yields. The alloy nanoparticles absorb visible light, and their conduction electrons gain energy, which is available at the surface Pd sites. Results of the density functional theory calculations indicate that transfer of the light excited electrons from the nanoparticle surface to the reactant molecules adsorbed on the nanoparticle surface activates the reactants. When the light intensity was increased, a higher reaction rate was observed, because of the increased population of photoexcited electrons. The irradiation wavelength also has an important impact on the reaction rates. Ultraviolet irradiation can drive some reactions with the chlorobenzene substrate, while visible light irradiation failed to, and substantially improve the yields of the reactions with the bromobenzene substrate. The discovery reveals the possibility of using low-energy and -density sources such as sunlight to drive chemical transformations.
Resumo:
We report herein highly efficient photocatalysts comprising supported nanoparticles (NPs) of gold (Au) and palladium (Pd) alloys, which utilize visible light to catalyse the Suzuki cross-coupling reactions at ambient temperature. The alloy NPs strongly absorb visible light, energizing the conduction electrons of NPs which produce highly energetic electrons at the surface sites. The surface of the energized NPs activates the substrates and these particles exhibit good activity on a range of typical Suzuki reaction combinations. The photocatalytic efficiencies strongly depend on the Au:Pd ratio of the alloy NPs, irradiation light intensity and wavelength. The results show that the alloy nanoparticles efficiently couple thermal and photonic energy sources to drive Suzuki reactions. Results of the density functional theory (DFT) calculations indicate that transfer of the light-excited electrons from the nanoparticle surface to the reactant molecules adsorbed on the nanoparticle surface activates the reactants. The knowledge acquired in this study may inspire further studies of new efficient photocatalysts and a wide range of organic syntheses driven by sunlight.
A novel human leucocyte antigen-DRB1 genotyping method based on multiplex primer extension reactions
Resumo:
We have developed and validated a semi-automated fluorescent method of genotyping human leucocyte antigen (HLA)-DRB1 alleles, HLA-DRB1*01-16, by multiplex primer extension reactions. This method is based on the extension of a primer that anneals immediately adjacent to the single-nucleotide polymorphism with fluorescent dideoxynucleotide triphosphates (minisequencing), followed by analysis on an ABI Prism 3700 capillary electrophoresis instrument. The validity of the method was confirmed by genotyping 261 individuals using both this method and polymerase chain reaction with sequence-specific primer (PCR-SSP) or sequencing and by demonstrating Mendelian inheritance of HLA-DRB1 alleles in families. Our method provides a rapid means of performing high-throughput HLA-DRB1 genotyping using only two PCR reactions followed by four multiplex primer extension reactions and PCR-SSP for some allele groups. In this article, we describe the method and discuss its advantages and limitations.
Resumo:
The scanning tunneling microscope (STM) has evolved continually since its invention, as scientists have expanded its use to encompass atomic-scale manipulation, momentum-resolved electronic characterization, localized chemical reactions (bond breaking and bond making) in adsorbed molecules, and even chain reactions at surfaces. This burgeoning field has recently expanded to include the use of the STM to inject hot electrons into substrate surface states; the injected electrons can travel laterally and induce changes in chemical structure in molecules located up to 100 nm from the STM tip. We describe several key demonstrations of this phenomenon, including one appearing in this issue of ACS Nano by Chen et al. Possible applications for this technique are also discussed, including characterizing the dispersion of molecule−substrate interface states and the controlled patterning of molecular overlayers.
Resumo:
The application of radical-mediated cyclizations and annulations in organic synthesis has grown in importance steadily over the years to reach the present status where they are now routinely used in the strategy-level planning.2 The presence of a quaternary carbon atom is frequently encountered in terpenoid natural products, and it often creates a synthetic challenge when two or more quaternary carbon atoms are present in a contiguous manner.3 Even though creation of a quaternary carbon atom by employing a tertiary radical is very facile, creation of a quaternary carbon atom (or a spiro carbon atom) via radical addition onto a fully substituted olefinic carbon atom is not that common but of synthetic importance. For example, the primary radical derived from the bromide 1 failed to cyclize to generate the two vicinal quaternary carbon atoms and resulted in only the reduced product 2.4 The tricyclic carbon framework tricyclo[6.2.1.01,5]undecane (3) is present in a number of sesquiterpenoids e.g. zizzanes, prelacinanes, etc.5
Resumo:
A number of macroporous metal oxide foams were prepared through self-sustained combustion reactions starting from dough made of the corresponding metal nitrate, urea and starch. The nitrate ion acts as an oxidizing agent, urea as fuel and starch as an organic binder. The metal oxide foams are characterized by scanning electron microscopy and powder X-ray diffraction.
Resumo:
Evidence of the initiation process during uncatalyzed thermal polymerization of vinyl monomers is presented. DSC studies reveal a prominent endothermic effect just before the polymerization exotherm, which is substantiated by the identification of the free radicals produced in the initiation by a quick quenching technique and subsequent detection by ESR at low temperatures.
Resumo:
Binuclear complexes of rhodium(I) of the type [(dien)(X)Rh(μ-N-N)Rh(X)(dien)] (dien = 1,5-cyclooctadiene or norbornadiene; N-N = pyrazine, 4,4′-bipyridine or Phenazine and X = Cl or Br) with bridging heterocycles have been isolated and their reactions with carbon monoxide, 2,2′-bipyridine and 1,10-phenanthroline investigated. The crystal structure of [(COD)(Cl)Rh(μ-pyrazine)Rh(Cl)(COD)] has been determined.
Resumo:
In a previous paper, we described the room temperature rapid, selective, reversible, and near quantitative Cu-activated nitroxide radical coupling (NRC) technique to prepare 3-arm polystyrene stars. In this work, we evaluated the Cu-activation mechanism, either conventional atom transfer or single electron transfer (SET), through kinetic simulations. Simulation data showed that one can describe the system by either activation mechanism. We also found through simulations that bimolecular radical termination, regardless of activation mechanism, was extremely low and could be considered negligible in an NRC reaction. Experiments were carried out to form 2- and 3-arm PSTY stars using two ligands, PMDETA and Me6TREN, in a range of solvent conditions by varying the ratio of DMSO to toluene, and over a wide temperature range. The rate of 2- or 3-arm star formation was governed by the choice of solvent and ligand. The combination of Me6TREN and toluene/DMSO showed a relatively temperature independent rate, and remarkably reached near quantitative yields for 2-arm star formation after only 1 min at 25 °C.
Resumo:
High activation of polystyrene with bromine end groups (PSTY-Br) to their incipient radicals occurred in the presence of Cu(I)Br, Me6TREN, and DMSO solvent. These radicals were then trapped by nitroxide species leading to coupling reactions between PSTY-Br and nitroxides that were ultrafast and selective in the presence of a diverse range of functional groups. The nitroxide radical coupling (NRC) reactions have the attributes of a “click” reaction with near quantitative yields of product formed, but through the reversibility of this reaction, it has the added advantage of permitting the exchange of chemical functionality on macromolecules. Conditions were chosen to facilitate the disproportionation of Cu(I)Br to the highly activating nascent Cu(0) and deactivating Cu(II)Br2 in the presence of DMSO solvent and Me6TREN ligand. NRC at room temperature gave near quantitative yields of macromolecular coupling of low molecular weight polystyrene with bromine chain-ends (PSTY-Br) and nitroxides in under 7 min even in the presence of functional groups (e.g., −≡, −OH, −COOH, −NH2, =O). Utilization of the reversibility of the NRC reaction at elevated temperatures allowed the exchange of chain-end groups with a variety of functional nitroxide derivatives. The robustness and orthogonality of this NRC reaction were further demonstrated using the Cu-catalyzed azide/alkyne “click” (CuAAC) reactions, in which yields greater than 95% were observed for coupling between PSTY-N3 and a PSTY chain first trapped with an alkyne functional TEMPO (PSTY-TEMPO-≡).
Resumo:
The methoxycyclophosphazenes [NP(OMe),], (n = 3-6) rearrange on heating to give oxocyclophosphazanes, [N(Me)PO(OMe)],. Isomeric products are formed when n = 4-6. The lH, ,lP, and 13C n.m.r. data for the starting materials and the products are presented. The ethoxy- and n-propoxy-derivatives N,P,( OR)* do not undergo the above rearrangement. The geminal derivatives N,P,R,(OMe), (R = Ph or NHBut) on heating yield both fully and partially rearranged products, namely dioxophosphaz-1 -enes and oxophosphazadienes, as shown by 270- MHz lH n.m.r. spectroscopy. The non-geminal derivative N,P,( NMe,),(OMe), gives only the fully rearranged product N,Me,P,(NMe,),O,(OMe), whose structure has been established from its lH and 31P n.m.r. spectra.
Resumo:
Preferential yield of ring expansion and rearrangement products through α-cleavage of tetramethyl-3-thio-1,3-cyclobutanedione (1) and 3-mercapto-2,2,4-trimethyl-3-pentenoic acid β-(thio lactone) (2) involving diradical and carbene has been observed upon photolysis of 1 and 2.