972 resultados para ZrO(2)center dot nH(2)O nanoparticles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time correlation functions of current fluctuations were calculated by molecular dynamics (MD) simulations in order to investigate sound waves of high wavevectors in the glass-forming liquid Ca(NO3)(2)center dot 4H(2)O. Dispersion curves, omega(k), were obtained for longitudinal (LA) and transverse acoustic (TA) modes, and also for longitudinal optic (LO) modes. Spectra of LA modes calculated by MD simulations were modeled by a viscoelastic model within the memory function framework. The viscoelastic model is used to rationalize the change of slope taking place at k similar to 0.3 angstrom(-1) in the omega(k) curve of acoustic modes. For still larger wavevectors, mixing of acoustic and optic modes is observed. Partial time correlation functions of longitudinal mass currents were calculated separately for the ions and the water molecules. The wavevector dependence of excitation energies of the corresponding partial LA modes indicates the coexistence of a relatively stiff subsystem made of cations and anions, and a softer subsystem made of water molecules. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4751548]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation, crystal structure and magnetic properties of a new oxalate-containing copper(II) chain of formula {[(CH3)(4)N](2)]Cu(C2O4)(2)] center dot H2O}(n) (1) [(CH3)(4)N+ = tetramethylammonium cation] are reported. The structure of 1 consists of anionic oxalate-bridged copper(II) chains, tetramethylammoniun cations and crystallization water molecules. Each copper(II) ion in 1 is surrounded by three oxalate ligands, one being bidentate and the other two exhibiting bis-bidenate coordination modes. Although all the tris-chelated copper(H) units from a given chain exhibit the same helicity, adjacent chains have opposite helicities and then an achiral structure results. Variable-temperature magnetic susceptibility measurements of 1 show the occurrence of a weak ferromagnetic interaction through the oxalate bridge [J = +1.14(1)cm(-1), the Hamiltonian being defined as H = -J Sigma nm S-i . S-j]. This value is analyzed and discussed in the light of available magnetostructural data for oxalate-bridged copper(H) complexes with the same out-of-plane exchange pathway. (C) 2012 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carlosbarbosaite, ideally (UO2)(2)Nb2O6(OH)(2)center dot 2H(2)O, is a new mineral which occurs as a late cavity filling in albite in the Jaguaracu pegmatite, Jaguaracu municipality, Minas Gerais, Brazil. The name honours Carlos do Prado Barbosa (1917-2003). Carlosbarbosaite forms long flattened lath-like crystals with a very simple orthorhombic morphology. The crystals are elongated along [001] and flattened on (100); they are up to 120 mu m long and 2-5 mu m thick. The colour is cream to pale yellow, the streak yellowish white and the lustre vitreous. The mineral is transparent (as individual crystals) to translucent (massive). It is not fluorescent under either long-wave or short-wave ultraviolet radiation. Carlosbarbosaite is biaxial(+) with alpha = 1.760(5), beta = 1.775(5), gamma = 1.795(5), 2V(meas) = 70(1)degrees, 2V(calc) = 83 degrees. The orientation is X parallel to a, Y parallel to b, Z parallel to c. Pleochroism is weak, in yellowish green shades, which are most intense in the Z direction. Two samples were analysed. For sample I, the composition is: UO3 54.52, CaO 2.07, Ce2O3 0.33, Nd2O3 0.49, Nb2O5 14.11, Ta2O5 15.25, TiO2 2.20, SiO2 2.14, Fe2O3 1.08, Al2O3 0.73, H2O (calc.) 11.49, total 104.41 wt.%; the empirical formula is (square 0.68Ca0.28Nd0.02Ce0.02)(Sigma=1.00)[U-1.44 square O-0.56(2.88)(H2O)(1.12)](Nb0.80Ta0.52Si0.27Ti0.21Al0.11Fe0.10)(Sigma=2.01) O-4.72(OH)(3.20)(H2O)(2.08). For sample 2, the composition is: UO3 41.83, CaO 2.10, Ce2O3 0.31, Nd2O3 1.12, Nb2O5 14.64, Ta2O5 16.34, TiO2 0.95, SiO2 3.55, Fe2O3 0.89, Al2O3 0.71, H2O (calc.) 14.99, total 97.43 wt.%; the empirical formula is (square 0.67Ca0.27Nd0.05Ce0.01)(Sigma=1.00)[U-1.04 square O-0.96(2.08)(H2O)(1.92)] (Nb0.79Ta0.53Si0.42Ti0.08Al0.10Fe0.08)(Sigma=2.00)O-4.00(OH)(3.96)(H2O)(2.04). The ideal endmember formula is (UO2)(2)Nb2O6(OH)(2)center dot 2H(2)O. Calculated densities are 4.713 g cm(-3) (sample 1) and 4.172 g cm(-3) (sample 2). Infrared spectra show that both (OH) and H2O are present. The strongest eight X-ray powder-diffraction lines [listed as d in angstrom(I)(hkl)] are: 8.405(8)(110), 7.081(10)(200), 4.201(9)(220), 3.333(6)(202), 3.053(8)(022), 2.931(7)(420), 2.803(6)(222) and 2.589(5)(040,402). The crystal structure was solved using single-crystal X-ray diffraction (R = 0.037) which gave the following data: orthorhombic, Cmem, a = 14.150(6), b = 10.395(4), c = 7.529(3) angstrom, V = 1107(1) angstrom(3), Z = 4. The crystal structure contains a single U site with an appreciable deficiency in electron scattering, which is populated by U atoms and vacancies. The U site is surrounded by seven 0 atoms in a pentagonal bipyramidal arrangemet. The Nb site is coordinated by four 0 atoms and two OH groups in an octahedral arrangement. The half-occupied tunnel Ca site is coordinated by four 0 atoms and four H2O groups. Octahedrally coordinated Nb polyhedra share edges and comers to form Nb2O6(OH)(2) double chains, and edge-sharing pentagonal bipyramidal U polyhedra form UO5 chains. The Nb2O6(OH)(2) and UO5 chains share edges to form an open U-Nb-phi framework with tunnels along [001] that contain Ca(H2O)(4) clusters. Carlosbarbosaite is closely related to a family of synthetic U-Nb-O framework tunnel structures, it differs in that is has an (OH)-bearing framework and Ca(H2O)(4) tunnel occupant. The structure of carlosbarbosaite resembles that of holfertite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The arene-ruthenium complex [Ru(eta(6)-C10H14)(dppf)Cl]PF6 (1) was used as a precursor for the syntheses of the [Ru(eta(6)-C10H14)(dppf)Br]PF6 (2), [Ru(eta(6)-C10H14)(dppf)I]PF6 (3). [Ru(eta(6)-C10H14)(dppf)SnF3]PF6 (4) and [Ru(eta(6)-C10H14)(dppf)Cl][SnCl3]center dot 0.45CH(2)Cl(2) (5) complexes by its reactions with KBr, Kl, SnF2 and SnCl2. respectively. All of the compounds were characterized by NMR, IR, Fe-57 and Sn-119-Mossbauer spectroscopy, and cyclic voltammetry. The single-crystal X-ray structure analysis of the [Ru(eta(6)-C10H14)(dppf)Cl] [SnCl3]center dot 0.45CH(2)Cl(2) complex revealed the expected piano-stool geometry. Cyclic voltammograms of the complexes showed only one quasi-reversible electrochemical process, involving the oxidation of Fe(II) and Ru(II) at the same potential, which was confirmed by exhaustive electrolysis experiments. Fe-57-Mossbauer parameters obtained for the complexes (1-5) were fitted with one doublet corresponding to a site of one iron(II). The Sn-119-Mossbauer parameters of the complex (4) indicate that tin is tetra covalent. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The excitonic splitting between the S-1 and S-2 electronic states of the doubly hydrogen-bonded dimer 2-pyridone center dot 6-methyl-2-pyridone (2PY center dot 6M2PY) is studied in a supersonic jet, applying two-color resonant two-photon ionization (2C-R2PI), UV-UV depletion, and dispersed fluorescence spectroscopies. In contrast to the C-2h symmetric (2-pyridone) 2 homodimer, in which the S-1 <- S-0 transition is symmetry-forbidden but the S-2 <- S-0 transition is allowed, the symmetry-breaking by the additional methyl group in 2PY center dot 6M2PY leads to the appearance of both the S-1 and S-2 origins, which are separated by Delta(exp) = 154 cm(-1). When combined with the separation of the S-1 <- S-0 excitations of 6M2PY and 2PY, which is delta = 102 cm(-1), one obtains an S-1/S-2 exciton coupling matrix element of V-AB, el = 57 cm(-1) in a Frenkel-Davydov exciton model. The vibronic couplings in the S-1/S-2 <- S-0 spectrum of 2PY center dot 6M2PY are treated by the Fulton-Gouterman single-mode model. We consider independent couplings to the intramolecular 6a' vibration and to the intermolecular sigma' stretch, and obtain a semi-quantitative fit to the observed spectrum. The dimensionless excitonic couplings are C(6a') = 0.15 and C(sigma') = 0.05, which places this dimer in the weak-coupling limit. However, the S-1/S-2 state exciton splittings Delta(calc) calculated by the configuration interaction singles method (CIS), time-dependent Hartree-Fock (TD-HF), and approximate second-order coupled-cluster method (CC2) are between 1100 and 1450 cm(-1), or seven to nine times larger than observed. These huge errors result from the neglect of the coupling to the optically active intra-and intermolecular vibrations of the dimer, which lead to vibronic quenching of the purely electronic excitonic splitting. For 2PY center dot 6M2PY the electronic splitting is quenched by a factor of similar to 30 (i.e., the vibronic quenching factor is Gamma(exp) = 0.035), which brings the calculated splittings into close agreement with the experimentally observed value. The 2C-R2PI and fluorescence spectra of the tautomeric species 2-hydroxypyridine center dot 6-methyl-2-pyridone (2HP center dot 6M2PY) are also observed and assigned. (C) 2011 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For understanding the major- and minor-groove hydration patterns of DNAs and RNAs, it is important to understand the local solvation of individual nucleobases at the molecular level. We have investigated the 2-aminopurine center dot H2O. monohydrate by two-color resonant two-photon ionization and UV/UV hole-burning spectroscopies, which reveal two isomers, denoted A and B. The electronic spectral shift delta nu of the S-1 <- S-0 transition relative to bare 9H-2-aminopurine (9H-2AP) is small for isomer A (-70 cm(-1)), while that of isomer B is much larger (delta nu = 889 cm(-1)). B3LYP geometry optimizations with the TZVP basis set predict four cluster isomers, of which three are doubly H-bonded, with H2O acting as an acceptor to a N-H or -NH2 group and as a donor to either of the pyrimidine N sites. The "sugar-edge" isomer A is calculated to be the most stable form with binding energy D-e = 56.4 kJ/mol. Isomers B and C are H-bonded between the -NH2 group and pyrimidine moieties and are 2.5 and 6.9 kJ/mol less stable, respectively. Time-dependent (TD) B3LYP/TZVP calculations predict the adiabatic energies of the lowest (1)pi pi* states of A and B in excellent agreement with the observed 0(0)(0) bands; also, the relative intensities of the A and B origin bands agree well with the calculated S-0 state relative energies. This allows unequivocal identification of the isomers. The R2PI spectra of 9H-2AP and of isomer A exhibit intense low-frequency out-of-plane overtone and combination bands, which is interpreted as a coupling of the optically excited (1)pi pi* state to the lower-lying (1)n pi* dark state. In contrast, these overtone and combination bands are much weaker for isomer B, implying that the (1)pi pi* state of B is planar and decoupled from the (1)n pi* state. These observations agree with the calculations, which predict the (1)n pi* above the (1)pi pi* state for isomer B but below the (1)pi pi* for both 9H-2AP and isomer A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The temperature dependence of the X-ray crystal structure and powder EPR spectrum of [(HC(Ph2PO)(3))(2)CU]-(ClO4)(2)center dot 2H(2)O is reported, and the structure at room temperature confirms that reported previously. Below similar to 100 K, the data imply a geometry with near elongated tetragonal symmetry for the [(HC(Ph2PO)(3))(2)Cu](2+) complex, but on warming the two higher Cu-O bond lengths and g-values progressively converge, and by 340 K the bond lengths correspond to a compressed tetragonal geometry. The data may be interpreted satisfactorily assuming an equilibrium among the energy levels of a Cu-O-6 polyhedron subjected to Jahn-Teller vibronic coupling and a lattice strain. However, agreement with the experiment is obtained only if the orthorhombic component of the lattice strain decreases to a negligible value as the temperature approaches 340 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Niobium pentoxide reacts actively with concentrate NaOH solution under hydrothermal conditions at as low as 120 degrees C. The reaction ruptures the corner-sharing of NbO7 decahedra and NbO6 octahedra in the reactant Nb2O5, yielding various niobates, and the structure and composition of the niobates depend on the reaction temperature and time. The morphological evolution of the solid products in the reaction at 180 degrees C is monitored via SEM: the fine Nb2O5 powder aggregates first to irregular bars, and then niobate fibers with an aspect ratio of hundreds form. The fibers are microporous molecular sieve with a monoclinic lattice, Na2Nb2O6 center dot(2)/3H2O. The fibers are a metastable intermediate of this reaction, and they completely convert to the final product NaNbO3 Cubes in the prolonged reaction of 1 h. This study demonstrates that by carefully optimizing the reaction condition, we can selectively fabricate niobate structures of high purity, including the delicate microporous fibers, through a direct reaction between concentrated NaOH solution and Nb2O5. This synthesis route is simple and suitable for the large-scale production of the fibers. The reaction first yields poorly crystallized niobates consisting of edge-sharing NbO6 octahedra, and then the microporous fibers crystallize and grow by assembling NbO6 octahedra or clusters of NbO6 octahedra and NaO6 units. Thus, the selection of the fibril or cubic product is achieved by control of reaction kinetics. Finally, niobates with different structures exhibit remarkable differences in light absorption and photoluminescence properties. Therefore, this study is of importance for developing new functional materials by the wet-chemistry process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new bimetallic oxamato-based magnets with the proligand 4,5-dimethyl-1,2-phenylenebis-(oxamato) (dmopba) were synthesized using water or dimethylsulfoxide (DMSO) as solvents. Single crystal X-ray diffraction provided structures for two of them: [MnCu(dmopba)(H(2)O)(3)]n center dot 4nH(2)O (1) and [MnCu(dmopba)(DMSO)(3)](n center dot)nDMSO (2). The crystalline structures for both 1 and 2 consist of linearly ordered oxamato-bridged Mn(II)Cu(II) bimetallic chains. The magnetic characterization revealed a typical behaviour of ferrimagnetic chains for 1 and 2. Least-squares fits of the experimental magnetic data performed in the 300-20 K temperature range led to J(MnCu) = -27.9 cm(-1), g(Cu) = 2.09 and g(Mn) = 1.98 for 1 and J(MnCu) = -30.5 cm(-1), g(Cu) = 2.09 and g(Mn) = 2.02 for 2 (H = -J(MnCu)Sigma S(Mn, i)(S(Cu, i) + S(Cu, i-1))). The two-dimensional ferrimagnetic system [Me(4)N](2n){Co(2)[Cu(dmopba)](3)}center dot 4nDMSO center dot nH(2)O (3) was prepared by reaction of Co(II) ions and an excess of [Cu(dmopba)](2-) in DMSO. The study of the temperature dependence of the magnetic susceptibility as well as the temperature and field dependences of the magnetization revealed a cluster glass-like behaviour for 3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, 1 wt % Pd/ZrO(2)-CeO(2) mixed oxide nanotubes with 90 mol % CeO(2) were synthesized following a very simple, high-yield procedure and their properties were characterized by synchrotron radiation X-ray diffraction, X-ray absorption near-edge spectroscopy (XANES), and scanning and high-resolution transmission electron microscopy (SEM and HRTEM). In situ XANES experiments were carried out under reducing conditions to investigate the reduction behavior of these novel nanotube materials. The Pd/CeO(2)-based nanotubes exhibited the cubic phase (Fm3m space group). The nanotube walls were composed of nanoparticles with an average crystallite size of about 7 nm, and the nanotubes exhibited a large specific surface area (85 m(2).g(-1)). SEM and HRTEM studies showed that individual nanotubes were composed of a curved sheet of these nanoparticles. Elemental analysis showed that the Ce:Zr:Pd ratios appeared to be approximately constant across space, suggesting compositional homogeneity in the samples. XANES results indicated that the extent of reduction of these materials is low and that the Ce(4+) state is in the majority over the reduced Ce(3+) state. The results suggest that Pd cations-most likely Pd(2+)-form a Pd-Ce-Zr oxide solid solution and that the Pd(2+) is stabilized against reduction in this phase. However, incorporation of the Pd (1 wt %) into the crystal lattice of the nanotubes also appeared to destabilize Ce(4+) against reduction to Ce(3+) and caused a significant increase in its reducibility.